Recent Flavour results from LHCb

V. Tisserand (LPC Clermont-Ferrand) IN2P3/CNRS-UCA
On behalf of the LHCb@CERN collaboration

58th International Winter Meeting on Nuclear Physics
January 20 to 24, 2020 Bormio, Italy
Introduction: LHC is a heavy flavour quarks factory

The LHCb detector has been designed for the study of hadrons decays containing the b and c quarks. Huge cross-sections @LHC and largest samples, mainly produced in pairs in tight cones around either beam. In LHCb acceptance (forward arm detector for precision measurements in the range 2<\eta<5):

- 1.4×10^{11} $\bar{b}b$ pairs per fb$^{-1}$ (\sqrt{s} =13 TeV)
- $\mathcal{O}(10^{12})$ cc pairs per fb$^{-1}$
- $\mathcal{O}(10^{13})$ K^0_s mesons per fb$^{-1}$

As opposed to B-factories (BA_{BA} & Belle(-II)), all species of b-hadrons produced: $B^+ \& B^0$ ("$B_u \& B_d$"), B_s, B_c, Λ_b, Σ_b, Ω_b ... (i.e. including b baryons). In the rough proportion : 40% B^+, 40% B^0, 10% B_s, 0.1% B_c & 10% b baryons. (see e.g. Phys.Rev. D100 (2019) no.3, 031102; arXiv:1902.06794). \Rightarrow LHCb does physics in s-, c-, b-hadron decays (not only*).

*e.g.: EW and QCD physics in large η @ LHC, Heavy quark production, conventional and exotic spectroscopy (Paolo Gandini) and Ion and fixed target physics (Valery Pugatch).
Outline

Per principiare: antipasti

CKM parameters & CP Violation (CPV):
- $|V_{cb}|$ from $B^0_s \to D_s^{(*)-} \mu^+\nu_\mu$
- CP & P violation in $\Lambda^0_b \to p\pi^-\pi^+\pi^-$

Piatto principale & dolce del giorno

Rare decays & Beyond the Standard Model (BSM) studies:
- Test Lepton Universality in $\Lambda^0_b \to pK^-l^+l^-$
- Search for the very rare $K^0_S \to \mu^+\mu^-$ decay
 (LHCb-PAPER-2019-038, to be sub. to Phys. Rev. Lett.)
Multipurpose detector in the forward region

- tracking efficiency > 96% (multibody final states!)
- excellent vertexing: impact parameter σ(IP)=15+29/P_T μm & decay time resolution \sim 45 fs
- very good momentum resolution: $dp/p \sim 0.5 - 1.0\%$
 σ(m_B)\sim25MeV/c² for 2-body
- excellent PID: (μ/K ID 97/70 % for (π \rightarrow μ,K) misID of few%)
- Hardware (L0: calo and muons)+ Software flexible trigger (HLT) input rate: 1 MHz
 small P_T and low mass objects
- stable running conditions constant number of PVs
- online real time analysis alignment and calibration fully automated

LHCb has recorded about 9 fb⁻¹ of pp collisions:
- 1 fb⁻¹ @ 7 TeV - Run 1
- 2 fb⁻¹ @ 8 TeV
- 6 fb⁻¹ @ 13 TeV - Run 2 total is 5-6 times Run1
(2017+2018 are 2/3 of the total dataset, given the cross-sections increases and trigger changes)

⇒ LHCb has yet submitted more than 500 papers
The Standard Model (SM) & the Unitary CKM Matrix ➔ mixing of the 3 quarks families & CP violation

• the Higgs boson gives mass to elementary bosons & fermions (quarks, leptons) through Yukawa couplings, but there is not only that !:

\[L_{\text{quarks}}^{\text{quarks}} = \frac{g}{2\sqrt{2}} W^\dagger_\mu \left[\sum_{ij} \bar{u}_i(q_2) \gamma^\mu (1 - \gamma^5) V_{ij} d_j \right] + \text{h.c} \]

charged currents (EW) imply transitions between quark families : quarks decays [there are no neutral current changing flavour (FCNC) at tree level (i.e. GIM mechanism)].

\[V_{\text{CKM}} = \begin{pmatrix}
 d & s & b \\
 u & 1-\lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\
 c & -\lambda & 1-\lambda^2/2 & A\lambda^2 \\
 t & A\lambda^3(1-\rho - i\eta) & -A\lambda^2 & 1 \\
\end{pmatrix} + \mathcal{O}(\lambda^4) \quad (VV^+=1) \]

• strong hierarchy in EW V_{ij} couplings for the 3 families (wrt diagonal couplings $\propto \lambda^N \approx (0.225)^N$: ⇒ Cabibbo angle).

• KM (Kobayashi-Maskawa) mechanism : 3 generations ⇒ 4 parameters: A, λ, ρ & 1 complex part η which phase is the unique source of CPV in SM.
The CKM Matrix: the unitary triangle & the very rich phenomenology of quark flavors

\[\begin{align*}
V_{\text{CKM}} = & \begin{pmatrix}
\text{d} & \text{s} & \text{b} \\
\text{u} \\
\text{c} \\
\text{t}
\end{pmatrix}
\begin{aligned}
& \begin{pmatrix}
\bar{n} & \bar{K} & \bar{B} \\
\bar{p} & \bar{\pi} & \bar{\pi} \\
\bar{\pi} & \bar{K} & \bar{D} \\
\bar{B} & \bar{B}_s & \bar{B}_s \\
\end{pmatrix}
\end{aligned}
\end{align*} \]

\(\Rightarrow 4 \) parameters \((A, \lambda, \rho \text{ & } \eta)\) to be obtained/tested wrt data: nucleons, \(K, D, B_{(s)}\) & top quark physics.

\(\Rightarrow \) unitarity relation in \(B_d\) system (1\(^{\text{st}}\) line/3\(^{\text{rd}}\) column):

\[
\frac{V_{ud}}{V_{cd}} \frac{V_{ub}^*}{V_{cb}^*} + 1 + \frac{V_{td}}{V_{cd}} \frac{V_{tb}^*}{V_{cb}^*} = 0 \\
O(1) + O(1) + O(1)
\]

Parametrisation « à la Wolfenstein » phase invariant & valid at any orders in \(\lambda\ @ \text{CKMfitter}

\text{(EPJ C41, 1-131, 2005)}:

\(\tilde{\rho} + i\tilde{\eta} = -\frac{V_{ud}}{V_{cd}} \left(\frac{V_{ub}^*}{V_{cb}^*} \right) \)

\(\lambda^2 = \frac{|V_{us}|^2}{|V_{ud}|^2 + |V_{us}|^2} \)

\(A^2 \lambda^4 = \frac{|V_{cb}|^2}{|V_{ud}|^2 + |V_{us}|^2} \)

Unitarity triangle in the \((\tilde{\rho}, \tilde{\eta})\) complex plane:

\[(\rho, \eta) \]

\(\alpha = \phi_2 \quad \frac{V_{td}}{V_{cd}} \frac{V_{tb}^*}{V_{cb}^*} = R_t \)

\(\gamma = \phi_3 \)

\(\beta = \phi_1 \)

V. Tisserand, LHCb, LPC Clermont FD
| V_{cb} | from $B^0_s \rightarrow D_s^{(*)-} \mu^+\nu_\mu$ |

$$V_{CKM} = \begin{pmatrix}
\begin{array}{ccc}
u & p \times \bar{e} & \nu \\
K & \bar{\nu} & \pi \\
B & \bar{\nu} & \pi \\
\end{array}
\end{pmatrix}$$

$$A^2 \lambda^4 = \frac{|V_{cb}|^2}{|V_{ud}|^2 + |V_{us}|^2}$$
Introducing $|V_{cb}|$ (i.e. $b \rightarrow c$ transition)

- **Inclusively, i.e. b-hadron $\rightarrow X_c l^+\nu_l$**
 - Not very difficult-to-calculate: quarks \approx in QCD states
 - Difficult to ensure pure incl. selection
 - Inclusive average: $|V_{cb}| = (42.19 \pm 0.78) \times 10^{-3}$

- **Exclusively, e.g. $B^0 \rightarrow D(\ast^-) l^+\nu_l$**
 - Much easier to do experimentally
 - Need form-factors (FF) to interpret results: quarks in strongly bound system
 - Exclusive average: $|V_{cb}| = (39.25 \pm 0.56) \times 10^{-3}$

- **Long standing discrepancy**: slight tension between averages!
 - New measurements with B^+ and B^0 by Babar (2019) and Belle (2018) uses also Boyd-Grinstein-Lebed (BGL) FF param. (more general, but truncation of series in BGL somewhat arbitrary).
 - Need to compare both parametrizations

- **LHCb can help with $B^0_s \rightarrow D_s(\ast^-) \mu^+\nu_\mu$ decays that have interesting features:**
 - Easier lattice QCD calculation of FF ("heavy" valence quark) allows for better precision
 - Expected less contamination from $D^{\ast\ast}_s$ feed-down, mostly decaying to $DK(\ast)$
Model decays with: CLN and BGL parameterisations to investigate possible differences

- Side-products: measure also BF of the two B^0_s exclusive decays

Need to:

- Extract signal yields of exclusive B^0_s decays from inclusive $D_s^-(\to \phi(KK)\pi^-)\mu^+$ sample
- Normalize to a reference decay. Use $D^-(\to KK\pi^-)\mu^+$: same final state and similar kinematic to suppress efficiency biases, measure the ratios
- Take as external input f_s/f_d, BF of B^0 and $D^{*-}(s)$ decays - these external inputs will bring the dominant uncertainty

\[
R_s \equiv \frac{\mathcal{B}(B_s^0 \to D_s^- \mu^+\nu_\mu)}{\mathcal{B}(B^0 \to D^- \mu^+\nu_\mu)},
\]
\[
R_s^* \equiv \frac{\mathcal{B}(B_s^0 \to D_{s}^{*-} \mu^+\nu_\mu)}{\mathcal{B}(B^0 \to D^{*-} \mu^+\nu_\mu)}
\]

Decay rates:

- **4-D, vector case:**
 can be decomposed in terms of 3 helicity amplitudes that in turn depend on 3 FF: $h_{A1}(w)$, $R_1(w)$ & $R_2(w)$

- **1-D, scalar case:**
 can be written as a function of 1 FF

\[
\frac{d^4\Gamma(B \to D^*\mu\nu)}{dw\ d\cos\theta_\mu\ d\cos\theta_D\ d\chi} = \frac{3m_B^3m_{D^*}^2G_F^2}{16(4\pi)^4}\eta_{EW}^2\left(V_{cb}\right)^2|A(w, \theta_\mu, \theta_D, \chi)|^2
\]
\[
\frac{d\Gamma(B \to D\mu\nu)}{dw} = \frac{G_F^2m_D^3}{48\pi^3}(m_B + m_D)^2\eta_{EW}^2\left(V_{cb}\right)^2(w^2 - 1)^{3/2}|G(w)|^2
\]

The 4-velocity $\omega=(m_B^2+m_{D^*}^2-q^2)/(2m_Bm_{D^*})$, where q^2 is the square of the $\mu\nu$ invariant mass

but, q^2 can not be measured directly ☹, because of the neutrino...
Measuring $|V_{cb}|$ & FF in $B^0_s \rightarrow D^*_s(\ast^\text{-})\mu^+\nu_\mu$

- final state not fully reconstructed (γ/π^0 from $D^*_{(-)}(s)$ and also ν_μ): employ novel strategy to constraint ω (i.e. q^2). Use reconstructed variables correlated with q^2 which preserve information on the FF $\rightarrow p_\perp(D_s)$

Separate signal/remaining Bckgds after selections in 2-D view.

- fit signal and reference yields (expressed from decay rates) and MC simulation templates of FF for CLN and BGL:
 - $p_\perp(D^-_s)$ (i.e. transverse to the B^0_s flight direction)
 - $m_{corr} \equiv (m^2(D^-_s\mu^+) + p^2_\perp(D^-_s\mu^+))^{1/2} + p_\perp(D^-_s\mu^+)$

- white dashed line: cut for analysis (dashed-dotted for systematics)
cannot fully reconstruct recoil variable ω (for form factors!), but $p_\perp(D_s)$ is a good proxy. It also has some small correlations for the $B^0_s \rightarrow D_s^{(*)} \mu^+ \nu_\mu$ decay with helicity angles $\cos \theta_D$ and $\cos \theta_\mu$.

white line: average/profile

- Selection inherited from LHCb-PAPER-2017-004 (B_s and D_s lifetime measurements)
- Cut $m(KK)$ around the ϕ mass for both D and D_s to have same kinematics for signal and reference decays
- Select also same-sign $D_s^{(*)} \mu^+$ combinations to model combinatorial bckgd
Measuring $|V_{cb}|$ & FF in $B^0_s \rightarrow D_s^{(*)}- \mu^+\nu_\mu$

Run 1 data only

➔ first, fit reference channel, keeping total signal yields floating $N^{(*)}_{\text{ref}}$

➔ for signal fit: express signal yields $N^{(*)}_{\text{sig}}$ in terms of $N^{(*)}_{\text{ref}}$
Measuring $|V_{cb}|$ & FF in $B^0_s \rightarrow D_s^{(*)-} \mu^+\nu_\mu$

CLN form factor (FF) fit

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>V_{cb}</td>
</tr>
<tr>
<td>$G(0)$</td>
<td>1.102 ± 0.034 (stat) ± 0.004 (ext)</td>
</tr>
<tr>
<td>$\rho^2(D^-)$</td>
<td>1.268 ± 0.047 (stat) ± 0.001 (ext)</td>
</tr>
<tr>
<td>$\rho^2(D^{*-})$</td>
<td>1.23 ± 0.17 (stat) ± 0.01 (ext)</td>
</tr>
<tr>
<td>$R_1(1)$</td>
<td>1.34 ± 0.25 (stat) ± 0.02 (ext)</td>
</tr>
<tr>
<td>$R_2(1)$</td>
<td>0.83 ± 0.16 (stat) ± 0.01 (ext)</td>
</tr>
</tbody>
</table>

BGL form factor (FF) fit

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>V_{cb}</td>
</tr>
<tr>
<td>$G(0)$</td>
<td>1.097 ± 0.034 (stat) ± 0.008 (ext)</td>
</tr>
<tr>
<td>d_1</td>
<td>-0.0172 ± 0.0074 (stat) ± 0.0007 (ext)</td>
</tr>
<tr>
<td>d_2</td>
<td>-0.256 ± 0.047 (stat) ± 0.002 (ext)</td>
</tr>
<tr>
<td>b_1</td>
<td>-0.060 ± 0.068 (stat) ± 0.013 (ext)</td>
</tr>
<tr>
<td>a_0</td>
<td>0.0374 ± 0.0086 (stat) ± 0.0008 (ext)</td>
</tr>
<tr>
<td>a_1</td>
<td>0.28 ± 0.26 (stat) ± 0.08 (ext)</td>
</tr>
<tr>
<td>c_1</td>
<td>0.0031 ± 0.0022 (stat) ± 0.0006 (ext)</td>
</tr>
</tbody>
</table>

➔ Very nice compatibility

Note: (details in backup)
Here external inputs systematic errors only (dominated by f_s/f_d) & when adding experim. syst. largest systematic on $|V_{cb}|$ is from $D^{*-}_s \rightarrow KK\pi^-$ model
Summary: in this novel approach for exclusive determination of $|V_{cb}|$

- exploit ratio $B^0_s \rightarrow D_s^{(*)-} \mu^+\nu_\mu / B^0 \rightarrow D^{(*)-} \mu^+\nu_\mu$ to cancel systematics
- MC template-based fit in plane:
 - helps to suppress Bckgds
 - express FF dependence in terms of observed quantities

Consistent results from both FF parametrizations:

$$|V_{cb}|_{CLN} = (41.4 \pm 0.6 \text{ (stat)} \pm 0.9 \text{ (syst)} \pm 1.2 \text{ (ext)}) \times 10^{-3}$$

$$|V_{cb}|_{BGL} = (42.3 \pm 0.8 \text{ (stat)} \pm 0.9 \text{ (syst)} \pm 1.2 \text{ (ext)}) \times 10^{-3}$$

Exclusive BF measurements:

$$B(B_s^0 \rightarrow D_s^{-} \mu^+\nu_\mu) = (2.49 \pm 0.12 \text{ (stat)} \pm 0.14 \text{ (syst)} \pm 0.16 \text{ (ext)}) \times 10^{-2}$$

$$B(B_s^0 \rightarrow D_s^{*-} \mu^+\nu_\mu) = (5.38 \pm 0.25 \text{ (stat)} \pm 0.46 \text{ (syst)} \pm 0.30 \text{ (ext)}) \times 10^{-2}$$

$$\frac{B(B_s^0 \rightarrow D_s^{-} \mu^+\nu_\mu)}{B(B_s^0 \rightarrow D_s^{*-} \mu^+\nu_\mu)} = 0.464 \pm 0.013 \text{ (stat)} \pm 0.043 \text{ (syst)}$$
Search for CPV in b-baryon decay $\Lambda^0_b \rightarrow p\pi^-\pi^+\pi^-$
Search for CPV in b-baryon decay $\Lambda^0_b \rightarrow p\pi^-\pi^+\pi^-$

- Violation of C/CP (C/CPV) symmetry is one of the necessary 3 Sakharov conditions for the matter wrt anti-matter asymmetry in baryogenesis after the early Universe.
- The predicted amount of CPV in the Standard Model (SM) is far too small to explain the absence of antimatter in the Universe. As-of-yet no CP violation in b-baryons has been observed, though the CKM mechanism predicts sizeable amount of violation.
- Possibly there are other sources of CPV beyond the SM. Need to search for CPV effects extensively as large LHCb dataset opens new field in heavy flavour physics precision measurements and many searches yet performed.

$$\text{Tree } \propto V^*_{ub}V_{ud} \sim \lambda^3$$

$$\text{Penguin } \propto \sum_{x=u,c,t} V^*_{xb}V_{xd} \sim \lambda^3$$

- Transitions governed $b \rightarrow u\bar{d}\bar{u}$ tree and $b \rightarrow d\bar{u}u$ penguin amplitudes of similar size
- Large relative CKM weak phase $\alpha = \text{Arg}(V^*_{tb}V_{td}/V^*_{ub}V_{ud})$ in SM
 \Rightarrow Potential non negligible CPV effects in the SM
Search for CPV in b-baryon decay $\Lambda^0_b \rightarrow p\pi^-\pi^+\pi^-$

- CPV can be measured by comparing yields between baryon and antibaryon decays (i.e. direct CP violation): but highly diluted by experimental effect (i.e. b-hadron production and charged particles reconstruction asymmetries).
- Rather use integrated and triple-product asymmetry (TPA) measurements:

Measure CPV via \hat{T}-(P-)violating asymmetries in $\Lambda_b \rightarrow p\pi^-\pi^+\pi^-$

- Triple products in Λ_b rest frame

\[
\begin{align*}
C_\hat{T} &= \overrightarrow{p}_p \cdot \left(\overrightarrow{p}_{\pi_{\text{fast}}} \times \overrightarrow{p}_{\pi^+} \right) \propto \sin \Phi \\
\overline{C}_\hat{T} &= \overrightarrow{p}_{\overline{p}} \cdot \left(\overrightarrow{p}_{\pi_{\text{fast}}}^+ \times \overrightarrow{p}_{\pi^-} \right) \propto \sin \overline{\Phi}
\end{align*}
\]

- $\hat{T}(P)$-odd asymmetries:

\[
\begin{align*}
A_\hat{T} &= \frac{N_{\Lambda_b^0} (C_\hat{T} > 0) - N_{\Lambda_b^0} (C_\hat{T} < 0)}{N_{\Lambda_b^0} (C_\hat{T} > 0) + N_{\Lambda_b^0} (C_\hat{T} < 0)} \\
\overline{A}_\hat{T} &= \frac{N_{\Lambda_b^0} (-\overline{C}_\hat{T} > 0) - N_{\Lambda_b^0} (-\overline{C}_\hat{T} < 0)}{N_{\Lambda_b^0} (-\overline{C}_\hat{T} > 0) + N_{\Lambda_b^0} (-\overline{C}_\hat{T} < 0)}
\end{align*}
\]

- CP-violating observable:

\[
a_{CP}^{\hat{T}-\text{odd}} = \frac{1}{2} (A_\hat{T} - \overline{A}_\hat{T})
\]

- P-violating observable:

\[
a_{P}^{\hat{T}-\text{odd}} = \frac{1}{2} (A_\hat{T} + \overline{A}_\hat{T})
\]
First indication of CPV in b-baryon decay $\Lambda_0^b \rightarrow p\pi^-\pi^+\pi^-$

With Run 1 (3 fb$^{-1}$) [Nature Physics 13, 391-396 (2017)]

- Integrated results compatible with CP (@ 3.3σ) & P (2.2σ) conservation
- Largely insensitive to production & decay asymmetries
- Low systematic uncertainties <1%
New search for CPV in b-baryon decay $\Lambda_{b}^{0} \rightarrow p\pi^{-}\pi^{+}\pi^{-}$ with 2011-2017 dataset

- 6.6 fb$^{-1}$ data analysed (Run2) \(\Rightarrow\) signal yield $= x4$ signal yield Run1
- Applied 2 different methods to search for CPV:
 - Triple Product Asymmetries (TPA), new optimization
 - Energy Test [(test statistics), thermodynamics independent model like, or statistical two-sample comparison technique (Energy=0 if similar samples)] applied here for the first time
- Improved understanding of decay dynamics:
 - Simplified $\Lambda_{b}^{0} \rightarrow p\pi^{-}\pi^{+}\pi^{-}$ amplitude model including main contributions $N_{+}^{*+}\pi^{-}(p a_{1}(1260)^{-})$ with $m(p\pi^{+}\pi^{-}_{\text{slow}}) < (>) 2.8 \text{ GeV/c}^{2}$ (plus other and also : $\Delta^{*}(1234)^{++}(\rightarrow\rho\pi^{+})\pi^{-} \frac{1}{2} a_{1} \rightarrow \rho\pi$) \(\Rightarrow\) identified interesting regions for CPV-odd and separate it to avoid dilution \(\Rightarrow\) 2 new binning schemes
 - $\Lambda_{b}^{0} \rightarrow \Lambda_{c}^{+}(pK^{-}\pi^{+})\pi^{-}$ validation control sample (i.e. no CPV expected)

\[N_{\text{sig}} = 27600 \pm 200 \]

\[N_{\text{control}} = 434500 \pm 800 \]
New results for CPV in b-baryon decay $\Lambda^0_b \rightarrow p\pi^-\pi^+\pi^-$

TPA method (systematic negligible wrt to statistical uncertainties)

Scheme A: based on helicity angles

- LHCb
 - χ^2/ndof = 23.6/16
 - χ^2/ndof = 50.6/16

Scheme B: on Φ angle intervals

- LHCb
 - χ^2/ndof = 18.5/10
 - χ^2/ndof = 54.3/10

- χ^2/ndof = 26.3/10
- χ^2/ndof = 27.9/10

- $a_{CP}^{T-odd} = -0.70 \pm 0.70 \pm 0.17$
- $a_P^{T-odd} = -3.98 \pm 0.70 \pm 0.17$

- Integrated TPA measurements:

- Both TPA and Energy Test methods (i.e. search for non-null asymmetries):
 - suggest CP conservation at 2.8-2.9 σ
 - first observation of P violation in b-baryon decay at the level of 5.5 σ!
Test of Lepton Universality with $\Lambda^0_b \rightarrow pK^-\ell^+\ell^-$
Rare b-hadron decays & \(b \rightarrow sll \) anomalies

FCNC (\(| \Delta F | = 1\), forbidden at Tree level) sensitive to indirect effects of “New Physics” (NP or BSM) in loops/penguin diagrams:

- Quantum corrections due to virtual effects (\(\Delta E. \Delta t \sim \hbar \)) \(\Rightarrow \) deviations wrt SM predictions precise measurements and precise calculations.
- Open gates to yet inaccessible energy scales at accelerators: \(\Lambda_{NP} > 0.5-2 \times 10^4 \) TeV
- Accessing new couplings/phases in loops/boxes: CPV &/or rare decays
- Many observables: asymmetries (\(A_{FB} \), direct, time dep: C, S, ...), angular/amplitude analyses (transversity/helicity), structure of currents (V-A), polarization (RH \(\gamma \) ?), Lepton Universality, BFs > or < SM pred.?
Rare b-hadron decays & $b \to s l l$ anomalies

$b \to s l l$ decay rates systematically below the SM predictions

$b \to s l l$ angular analysis
Local tension with SM predictions (2.8 and 3.0σ)

[LHCb, JHEP 02 (2016) 104]
Intriguing deviations in rare $b \rightarrow sll$ decays:
Lepton Flavour Violations?

Lepton Universality (LU) tests vs $q^2(ll)$:

$$R_H \equiv \frac{\int \frac{d\Gamma(B \rightarrow H\mu^+\mu^-)}{dq^2}}{\int \frac{d\Gamma(B \rightarrow He^+e^-)}{dq^2}}$$

NP or not NP?

- **LHCb deviations @ 2-2.5 σ** (R_{K^*} with Run1 only data and R_K with Run1 + 2016)
- Crucial to add more data and measure LU in other modes and b-hadron decays
- Also some tensions in $b\rightarrow cl\nu$ in $B \rightarrow D(*)\tau\nu$ wrt $B \rightarrow D(*)\mu/e\nu$
 (i.e. 3rd vs 1st & 2nd family)
Method for Test of Lepton Universality (LU) in $\Lambda^0_b \to pK^- l^+ l^-$

1) In the SM:

$$R_H = \frac{BR(B \to H \mu^+ \mu^-)}{BR(B \to H e^+ e^-)} = 1 + \mathcal{O}(10^{-2})$$

2) Experimentally:

$$R_H \propto \frac{N(B \to H \mu^+ \mu^-)}{N(B \to H e^+ e^-)} \times \frac{\epsilon(B \to H e^+ e^-)}{\epsilon(B \to H \mu^+ \mu^-)}$$

- From mass fit
- From MC simu. + calibration samples

3) Exploit the well test LU in J/ψ modes:

$$r_{J/\psi} = \frac{BR(B \to H J/\psi (\mu^+ \mu^-))}{BR(B \to H J/\psi (e^+ e^-))} = 1$$

- as stringent cross-check
- to build double ratio \to cancel systematic effects

$$R_H = \frac{\frac{N(B \to H \mu^+ \mu^-)}{N(B \to H J/\psi (\mu^+ \mu^-))}}{\frac{N(B \to H e^+ e^-)}{N(B \to H J/\psi (e^+ e^-))}} \times \frac{\frac{\epsilon(B \to H e^+ e^-)}{\epsilon(B \to H \mu^+ \mu^-)}}{\frac{\epsilon(B \to H J/\psi (e^+ e^-))}{\epsilon(B \to H J/\psi (\mu^+ \mu^-))}}$$

\Rightarrow First test of LU with b-baryons, using $\Lambda^0_b \to pK^- \mu^+ \mu^-$ and $\Lambda^0_b \to pK^- e^+ e^-$ decays
Test of Lepton Universality (LU) in \(\Lambda_b^0 \rightarrow pK^-l^+l^- \)

\[
R_{pK}^{-1} = \frac{\mathcal{B}(\Lambda_b^0 \rightarrow pK^-e^+e^-)}{\mathcal{B}(\Lambda_b^0 \rightarrow pK^-J/\psi(\rightarrow e^+e^-))} \Big/ \frac{\mathcal{B}(\Lambda_b^0 \rightarrow pK^-\mu^+\mu^-)}{\mathcal{B}(\Lambda_b^0 \rightarrow pK^-J/\psi(\rightarrow \mu^+\mu^-))}
\]

Note: use of inverse definition due to expected small yields in rare electron mode (better LLH numerical behavior)

- \(R_{pK} \) is expected to be unity in the SM \cite{Fuentes-Martin et al.}
- Complementary to \(R_{K(*)} \) due to fractional baryon spin

⇒ Side-products:
- \(\Lambda_b \rightarrow pK^-e^+e^- \) never observed before → first observation
- \(BF(\Lambda_b \rightarrow pK^-\mu^+\mu^-) \) never measured before → first measurement
Test of Lepton Universality (LU) in $\Lambda^0_b \rightarrow pK^-l^+l^-$

- Simulation describes hadronic pK^- structure (pentaquarks)
- Selection adapted form $\Lambda^0_b \rightarrow \Lambda l^+l^-$ [angular analysis] [JHEP 09 (2018) 146]
- R_{K^*} LU Test [JHEP 08 (2017) 055]

\Rightarrow LU test performed in the region $(J/\psi \in [6,11] \text{ GeV}^2/c^4)$:
 - $100 \text{ MeV}^2/c^4 < q^2 < 6 \text{ GeV}^2/c^4$
 - $m(pK) < 2.6 \text{ GeV}/c^2$

\Rightarrow Bremsstrahlung effects in the ee channel (even with corrections)
\Rightarrow Special electron/muon Hardware trigger
Test of Lepton Universality (LU) in $\Lambda^0_b \rightarrow pK^-l^+l^-$

Resonant modes $q^2 \in [6,11]$ GeV2/c4 (pK$^+$/Jψ): mass fit

Constrain m(ee/\mu\mu) to known J/ψ mass → better mass resolution for m(Λ^0_b)

Efficiency cross-check: single ratio $r_{J/\psi}$ known to be LU

$\frac{r_{J/\psi}}{r_{J/\psi}} = \frac{N(\Lambda^0_b \rightarrow pK^- J/\psi(\rightarrow e^+e^-))}{N(\Lambda^0_b \rightarrow pK^- J/\psi(\rightarrow \mu^+\mu^-))} \times \frac{\epsilon(\Lambda^0_b \rightarrow pK^- J/\psi(\rightarrow e^+e^-))}{\epsilon(\Lambda^0_b \rightarrow pK^- J/\psi(\rightarrow \mu^+\mu^-))}$

$r_{J/\psi}^{-1} = 0.96 \pm 0.05$

- including stat. and syst.
- **Compatible with 1** (validated to be flat in kine & topo vars: $P_T(\Lambda^0,l_{max})$, m(pK), θ_{ll})
- Also checked with $\psi(2S)$
Test of Lepton Universality (LU) in $\Lambda^0_b \rightarrow pK^-l^+l^-$

Non-resonant modes: mass fit

Mass constraint not possible \rightarrow larger mass ranges, degradation for electrons

In $0.1 < q^2 < 6 \text{ GeV}^2/c^4$ and $m(pK^-) < 2.6 \text{ GeV}/c^2$:

- First measurement of $\Lambda^0_b \rightarrow pK^-\mu^+\mu^-$ branching fraction
- Then derive first observation of $\Lambda^0_b \rightarrow pK^-e^+e^-$ decay mode (significance $>7\sigma$)

$\mathcal{B}(\Lambda^0_b \rightarrow pK^-\mu^+\mu^-)|_{0.1 < q^2 < 6 \text{ GeV}^2/c^4} = (2.65 \pm 0.14 \pm 0.12 \pm 0.29^{+0.38}_{-0.23}) \times 10^{-7}$

$\mathcal{B}(\Lambda^0_b \rightarrow pK^-e^+e^-)|_{0.1 < q^2 < 6 \text{ GeV}^2/c^4} = (3.1 \pm 0.4 \pm 0.2 \pm 0.3^{+0.4}_{-0.3}) \times 10^{-7}$

uncertainty dominated by knowledge of Λ_b hadronization fraction at LHC

V. Tisserand, LHCb, LPC Clermont FD
Result for test of Lepton Universality (LU) in $\Lambda_0^b \rightarrow pK^-l^+l^-$

In $0.1 < q^2 < 6 \text{ GeV}^2/c^4$ and $m(pK^-) < 2.6 \text{ GeV}/c^2$:

- **first test of LU in b-baryons** (stat. dominates ~15% & main syst. from fit model, MC corrections, norm. mode):

 \[
 R_{pK}^{-1} \bigg|_{0.1<q^2<6 \text{ GeV}^2/c^4} = 1.17^{+0.18}_{-0.16} \pm 0.07
 \]

- **inverting likelihood profile**:

 \[
 R_{pK} \bigg|_{0.1<q^2<6 \text{ GeV}^2/c^4} = 0.86^{+0.14}_{-0.11} \pm 0.05
 \]

\Rightarrow **Test of LU**: R_{kp} compatible with unity @1σ & previous $R_{K(*)}$ measurements (i.e. <1)

- So far, the puzzle remains and all the Test of LU favours lower than 1 R_h values
- Need to add more data (add 2017+2018 part of Run2 (i.e. x2) + Run 3 after 2021):
 - to study $m(pK^-)$ spectrum
 - to split q^2 ranges for higher sensitivity
Search for the very rare decay $K^0_s \rightarrow \mu^+\mu^-$
Introducing the very rare decay $K^0_s \rightarrow \mu^+\mu^-$

- Strongly suppressed Flavour-changing Neutral Current (FCNC) transition
 - the cousin of $B^0_{(s)} \rightarrow \mu^+\mu^-$
- Dominated by long distance contributions through $K^0 \rightarrow \gamma\gamma$.
- $BF(K^0_L \rightarrow \mu^+\mu^-) = (6.84 \pm 0.11)x10^{-9}$, in agreement with the SM.
- Allows to set model-independent bounds on the CP-violating phase of the $s \rightarrow dll$ amplitude.
- SM prediction: $BF(K^0_s \rightarrow \mu^+\mu^-) = (5.18 \pm 1.50_{LD} \pm 0.02_{SD})10^{-12}$

➢ Still room, with the present constraints

[LHCb-PAPER-2019-038]
Measuring the BF of the very rare decay $K^0_s \rightarrow \mu^+\mu^-$

[LHCb-PAPER-2019-038]

- Use huge 2016-2018 Run 2 LHCb Ks dataset (5.6 fb$^{-1}$ @ 13 TeV & K^0_s x-sec~ 0.6 barn !!)

- New reconstruction and triggering since Run 1:
 ✓ New muons tracks implemented at HLT1 software trigger (use relatively low occupancy in muon chamber for μ-ID online) : down to $P_T = 80$ MeV/c & re-optimization of HLT1,2 ➔ gain about 1 order of magnitude on $K^0_s \rightarrow \mu^+\mu^-$ rate wrt Run1

Use $K^0_s \rightarrow \pi^+\pi^-$ as control/normalization sample
- Similar - selection to that of $K^0_s \rightarrow \mu^+\mu^-$
- Only trigger and particle identification requirements are different.
- BF from ratio (most of the systematic effects cancel):

$$B(K^0_s \rightarrow \mu^+\mu^-) = \frac{N_{\mu}^{\text{observed}}}{N_{\pi}^{\text{observed}}} \times \frac{\varepsilon_{\text{selection}}^{\pi}}{\varepsilon_{\text{selection}}^{\mu}} \times \frac{\varepsilon_{\text{trigger}}^{\pi}}{\varepsilon_{\text{trigger}}^{\mu}} \times \frac{1}{\varepsilon_{\text{muon-ID}}} \times B(K^0_s \rightarrow \pi^+\pi^-)$$

From fits to data

Similar for both

Different

LHCb 2016 (1.6 fb$^{-1}$)

Candidates/2.0 MeV/c2

$\mathcal{O} \left(10^6\right)$ for 2016 only!
Results for the very rare decay $K^0_s \rightarrow \mu^+\mu^-$

4 among the 20 fitting bins (10 MVA x 2 trigger types) with highest S/B ratio

Result obtained from the posterior probability of the branching fraction in the fit (Run2 data only):

$$\mathcal{B} \left(K^0_S \rightarrow \mu^+\mu^- \right) < 2.2(2.6) \times 10^{-10} \text{ at } 90(95)\% \text{ CL}$$

Minimum: $\mathcal{B} \left(K^0_S \rightarrow \mu^+\mu^- \right) = 1.03^{+0.76}_{-0.68} \times 10^{-10}$

Combining with Run1:

$$\mathcal{B} \left(K^0_S \rightarrow \mu^+\mu^- \right) < 2.1(2.4) \times 10^{-10} \text{ at } 90(95)\% \text{ CL}$$

Minimum: $\mathcal{B} \left(K^0_S \rightarrow \mu^+\mu^- \right) = 0.94^{+0.72}_{-0.64} \times 10^{-10}$

≥ 18-40 times the SM predictions
LHCb exploits an unprecedented dataset of b-, c-, s-hadrons, of any kinds, to
challenge the Standard Model of Particle Physics:

- **CKM and CP violation physics:**
 - New exclusive method to measure $|V_{cb}|$ from $B_s^0 \rightarrow D_s^{(*)-} \mu^+\nu_\mu$

 - Search for CP & observation of P violation in $\Lambda^0_b \rightarrow p\pi^-\pi^+\pi^-$

- **Rare decays for test of beyond the SM studies:**
 - Many intriguing indication of deviations in $b \rightarrow s l^+l^-$ decays

 \begin{align*}
 \Rightarrow \text{perform Test of Lepton Universality in } \Lambda^0_b \rightarrow pK^-l^+l^-
 \end{align*}

 - Search for the very rare $K^0_s \rightarrow \mu^+\mu^-$ decay: more than 3 orders of magnitude
gained on the upper limit (i.e. SM x 20-40) since the beginning of LHCb

 (LHCb-PAPER-2019-038, to be sub. to Phys. Rev. Lett.)

Yet the statistics is a still a key issue. Many more to come with first phase
of LHCb upgrade of LHCb Run3-Run4 (2021-2030): $\approx 50 \text{ fb}^{-1}$ and second
phase of LHCb upgrade after (2030-2038): $\approx 300 \text{ fb}^{-1}$

\Rightarrow **towards ultimate test of flavour physics on many subjects.**
BACKUPs
Measuring $|V_{cb}|$ and FF in $B^0_s \rightarrow D_s^{(*)-} \mu^+ \nu_\mu$

Data sample, selection:

- analysis based on 7 and 8 TeV data (3 fb$^{-1}$)
- use $B^0_s \rightarrow D_s^{(*)-} \mu^+ \nu_\mu$ decays
 - trigger on high $p_T \mu$ associated with 1-3 charged displaced tracks
 - offline, select μ^+ plus three tracks consistent with $D_s^- \rightarrow K^+K^-\pi^-$
 - $m_{K^+K^-} \in [1008, 1032]$ MeV$/c^2$ to suppress BG under D_s^- peaks, and keep signal and reference channel kinematics similar
 - $m_{K^+K^-\pi^-}$ mass in D^- or D_s^- range
 - produce clean D_s^- peaks by optimising selection using track/vertex quality, vertex displacement, p_T and PID criteria
 - measure yields relative to reference decays ($B^0 \rightarrow D^{(*)-} \mu^+ \nu_\mu$)
- only partial reconstruction: $D_s^- (\rightarrow \phi(K^+K^-)\pi^-) \mu^+$
 - cross-contamination between $D^-\mu^+$ and $D_s^-\mu^+$ samples below 0.1% (based on simulation)
 - combinatorial BG from same-sign $D_s^-\mu^-$ candidates
 - veto misreconstructed/mis-IDed $B^0_s \rightarrow \psi'' (\rightarrow \mu^+\mu^-) \phi (\rightarrow K^+K^-)$, $\Lambda^0_b \rightarrow \Lambda^+_c (\rightarrow pK^-\pi^+) \mu^-\bar{\nu}_\mu X$ and $B^0_{(s)} \rightarrow D_s^- \pi^+$
Measuring $|V_{cb}|$ and FF in $B^0_s \rightarrow D_s^{(*)-} \mu^+ \nu_\mu$

Analysis strategy:

- Signal and reference yields from fit to 2D distribution of p_\perp, m_{corr}
 - Use B^0_s modes are signal
 - Easier LQCD calculation due to heavier s quark
 - FF theory calculations available for whole q^2 spectrum
 - Less contamination due to less contamination from partially reconstructed decays

- 2D templates from simulation (signal, reference decays and physics bkg) and same-sign data (combinatorial bkg)
 - Floating FF parameters used to rebuild the 2D templates for signal and reference decays at each fit iteration

- $B^0_s \rightarrow D_s^{(*)-} \mu^+ \nu_\mu$ yields expressed as a function of $|V_{cb}|$ by integrating over the respective differential decay rates (equations in 2 slides)
 - FF described by either the CLN or BGL parametrization, with some parameters constrained to their LQCD determinations

- All other yields left free to float in the fit
Measuring $|V_{cb}|$ and FF in $B^0_s \rightarrow D_s^{(*)-} \mu^+\nu_\mu$

Analysis strategy illustration:

Recalculate 2D templates in $p_\perp(D_s^- \mu^+) - m_{corr}$ for each FF parameter change.
Measuring $|V_{cb}|$ & FF in $B^0_s \rightarrow D_s^{(*)-} \mu^+ \nu_\mu$

➔ first, fit reference channel, keeping total signal yields floating $N^{(*)}_{\text{ref}}$

greater than 10^3

Details:

$N^{(*)}_{\text{sig}} = N^{(*)} \tau \int \frac{d\Gamma(B^0_s \rightarrow D_s^{(*)-} \mu^+ \nu_\mu)}{d\zeta} \, d\zeta$ where

$\zeta = \begin{cases}
\mathbf{w} & \text{for } B^0_s \rightarrow D_s^{-} \mu^+ \nu_\mu \\
(\mathbf{w}, \cos \theta_\mu, \cos \theta_D, \chi) & \text{for } B^0_s \rightarrow D_s^{(*)-} \mu^+ \nu_\mu
\end{cases}$

$N^{(*)} = \frac{N^{(*)}_{\text{ref}} \varepsilon^{(*)}_{\text{signal}}}{\beta(B^0_s \rightarrow D_s^{(*)-} \mu^+ \nu_\mu)}$, with $\varepsilon^{(*)}$ efficiency ratio signal/reference mode

$K = \frac{f_s}{f_d} \frac{\beta(D_s \rightarrow K^+ K^- \pi^-)}{\beta(D^- \rightarrow K^- K^+ \pi^-)}$ and $K^* = \frac{f_s}{f_d} \frac{\beta(D_s^{-*} \rightarrow D^- X)}{\beta(D^- \rightarrow K^- K^+ \pi^-)}$

➔ for signal fit: express signal yields $N^{(*)}_{\text{sig}}$ in terms of $N^{(*)}_{\text{ref}}$
Measuring $|V_{cb}|$ and FF in $B^0_s \to D_s^{(*)-}\mu^+\nu_\mu$

External inputs (experimental/theory, preliminary):

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f_s/f_d \times b(D_S^- \to K^-K^+\pi^-) \times \tau [ps]$</td>
<td>0.01913 ± 0.00076</td>
</tr>
<tr>
<td>$\mathcal{B}(D^- \to K^-K^+\pi^-)$</td>
<td>0.00993 ± 0.00024</td>
</tr>
<tr>
<td>$\mathcal{B}(D_s^{*-} \to D^-X)$</td>
<td>0.323 ± 0.006</td>
</tr>
<tr>
<td>$\mathcal{B}(B^0 \to D^-\mu^+\nu_\mu)$</td>
<td>0.0231 ± 0.0010</td>
</tr>
<tr>
<td>$\mathcal{B}(B^{0*} \to D_s^{*-}\mu^+\nu_\mu)$</td>
<td>0.0505 ± 0.0014</td>
</tr>
<tr>
<td>B_s^0 mass [GeV/c2]</td>
<td>5.36688 ± 0.00017</td>
</tr>
<tr>
<td>D_S^- mass [GeV/c2]</td>
<td>1.96834 ± 0.00007</td>
</tr>
<tr>
<td>D_s^{*-} mass [GeV/c2]</td>
<td>2.1122 ± 0.0004</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>η_{EW}</td>
<td>1.0066 ± 0.0050</td>
</tr>
<tr>
<td>$h_A(1)$</td>
<td>0.902 ± 0.013</td>
</tr>
</tbody>
</table>

CLN parametrisation:
- $\mathcal{G}(0)$: 1.073 ± 0.037
- $\rho^+(D_s^-)$: 1.299 ± 0.051

BGL parametrisation:
- $\mathcal{G}(0)$: 1.072 ± 0.037
- d_1: -0.0117 ± 0.0081
- d_2: -0.239 ± 0.048
Systematics:

<table>
<thead>
<tr>
<th>Source</th>
<th>CLN parametrization</th>
<th>Uncertainty</th>
<th>BGL parametrization</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$</td>
<td>V_{cb}</td>
<td>$ $\rho^2(D_s^-)$ $\xi(0)$ $\rho^2(D_s^{(*)-})$ $R_1(1)$ $R_2(1)$</td>
</tr>
<tr>
<td>$f_s/f_d \times 6.930$ $(D_s^- \rightarrow K^+K^-\pi^-)(\times \tau)$</td>
<td>0.8 0.0 0.0 0.0 0.0 0.0 0.0</td>
<td>0.8 0.0 0.0 0.0 0.3 0.0 0.2 0.1</td>
<td></td>
</tr>
<tr>
<td>$6 \times (D^- \rightarrow K^-K^+\pi^-)$</td>
<td>0.5 0.0 0.0 0.0 0.0 0.0 0.0</td>
<td>0.5 0.0 0.0 0.0 0.3 0.0 0.2 0.1</td>
<td></td>
</tr>
<tr>
<td>$B(D^* \rightarrow D^-X)$</td>
<td>0.2 0.0 0.1 0.0 0.1 0.0 0.0</td>
<td>0.1 0.2 0.0 0.1 0.5 0.2 0.5 0.3</td>
<td></td>
</tr>
<tr>
<td>$B(B^0 \rightarrow D^+\mu^+\nu_{\mu})$</td>
<td>0.4 0.1 0.3 0.1 0.2 0.1</td>
<td>0.5 0.6 0.1 0.1 1.3 0.4 1.1 0.7</td>
<td></td>
</tr>
<tr>
<td>$B(B^0 \rightarrow D^{(**-)}\mu^+\nu_{\mu})$</td>
<td>0.3 0.1 0.2 0.1 0.1 0.1</td>
<td>0.2 0.4 0.1 0.1 0.8 0.3 0.7 0.4</td>
<td></td>
</tr>
<tr>
<td>$m(B^0)$, $m(D^(*-))$</td>
<td>0.0 0.0 0.0 0.0 0.0 0.0</td>
<td>0.0 0.0 0.0 0.0 0.3 0.0 0.2 0.1</td>
<td></td>
</tr>
<tr>
<td>η_{EW}</td>
<td>0.2 0.0 0.0 0.0 0.0 0.0</td>
<td>0.2 0.0 0.0 0.0 0.3 0.0 0.2 0.1</td>
<td></td>
</tr>
<tr>
<td>$F_{\Lambda}(1)$</td>
<td>0.3 0.1 0.2 0.1 0.1 0.1</td>
<td>0.3 0.4 0.1 0.1 0.9 0.3 0.8 0.5</td>
<td></td>
</tr>
<tr>
<td>External inputs (ext)</td>
<td>1.2 0.1 0.4 0.1 0.2 0.1</td>
<td>1.2 0.7 0.2 0.8 1.3 0.6 0.8 0.8</td>
<td></td>
</tr>
<tr>
<td>$D^- \rightarrow K^+K^-\pi^-$ model</td>
<td>0.8 0.0 0.0 0.0 0.0 0.0</td>
<td>0.8 0.0 0.0 0.0 0.0 0.0</td>
<td></td>
</tr>
<tr>
<td>Background</td>
<td>0.4 3.2 2.2 0.5 0.9 0.7</td>
<td>0.1 4.9 1.5 2.3 6.9 2.0 5.2 2.0</td>
<td></td>
</tr>
<tr>
<td>Fit bias</td>
<td>0.0 0.0 0.0 0.0 0.0 0.0</td>
<td>0.2 0.0 0.0 0.0 1.8 0.4 1.6 0.4</td>
<td></td>
</tr>
<tr>
<td>Corrections to simulation</td>
<td>0.0 0.1 0.5 0.0 0.1 0.0</td>
<td>0.0 0.1 0.0 0.1 0.1 0.0 0.2 0.1</td>
<td></td>
</tr>
<tr>
<td>Form-factor parametrization</td>
<td>- - - - - -</td>
<td>- - - - - -</td>
<td></td>
</tr>
<tr>
<td>Experimental (syst)</td>
<td>0.9 3.2 2.2 0.5 0.9 0.7</td>
<td>0.9 4.9 1.5 2.3 7.2 2.1 5.4 2.0</td>
<td></td>
</tr>
<tr>
<td>Statistical (stat)</td>
<td>0.6 4.7 3.4 1.7 2.5 1.6</td>
<td>0.8 7.4 4.7 3.4 6.8 2.2 8.6 2.6</td>
<td></td>
</tr>
</tbody>
</table>

largest systematic uncertainties on $|V_{cb}|$ from f_s/f_d and $D_{s(-)}^\rightarrow K^+K^-\pi^-$ model
• CPV can be measured by comparing yields between baryon and antibaryon decays

\[A_{CP} = \frac{N(B \rightarrow f') - N(\bar{B} \rightarrow \bar{f}')}{N(B \rightarrow f') + N(\bar{B} \rightarrow \bar{f}')} \propto \sin(\delta_1 - \delta_2)\sin(\theta_1 - \theta_2) \]

✓ The decay receives contributions from at least two amplitudes
✓ Sensitive to baryon-antibaryon production asymmetries \(A_P(B) \)
✓ Sensitive to charged particle reconstruction asymmetries \(A_D(f) \)

• Measure \(\Delta A_{CP} = A_{CP}(B \rightarrow f') - A_{CP}(B \rightarrow f'') \) to mitigate the effect of the experimental effects
• P-even CPV test
Measure CPV via \hat{T}-(P-)violating asymmetries in $\Lambda_b^0 \rightarrow p h^- h^+ h^-$:

- $C_{\hat{T}} = p_1 \cdot (p_2 \times p_3)$

For Λ_b^0 particle:

- $C_{\hat{T}} > 0$
 - $\vec{p}_2 \times \vec{p}_3$
 - \vec{p}_1

For Λ_b^0 antiparticle:

- $\bar{C}_{\hat{T}} > 0$
 - $\bar{\vec{p}}_2 \times \bar{\vec{p}}_3$
 - $\bar{\vec{p}}_1$

- $C_{\hat{T}} < 0$
 - $-\vec{p}_2 \times -\vec{p}_3$
 - $-\vec{p}_1$

- $\bar{C}_{\hat{T}} < 0$
 - $-\bar{\vec{p}}_2 \times -\bar{\vec{p}}_3$
 - $-\bar{\vec{p}}_1$

- Is the P violation different between particle and antiparticle?
- P-odd CPV test
Search for CPV in b-baryon decay $\Lambda_b \to p\pi\pi\pi$

Sensitivity to CPV

- Complementary approach to other measurements
 \[a_{CP}^{T-\text{odd}} \propto \cos(\delta_{\text{even}} - \delta_{\text{odd}}) \sin(\theta_{\text{even}} - \theta_{\text{odd}}) \]
 not sensitive if $\delta_{\text{even}} - \delta_{\text{odd}} = \pi/2$ or $3\pi/2$

 δ: strong phase
 θ: weak phase

 \hat{T}-even
 \hat{T}-odd

- By construction, $A_{\hat{T}}$, $\overline{A}_{\hat{T}}$, $a_{CP}^{T-\text{odd}}$ and $a_{P}^{T-\text{odd}}$ are largely insensitive to
 - particle/antiparticle production asymmetries
 - detector-induced charge asymmetries
 \implies reduced systematic uncertainties

- Sensitive to potential new physics effects
Phasespace integrated results

TPA method

- First observation of P violation at 5.5σ in a b-baryon decay
- No sign of CPV integrated over phase space

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A_T (%)</td>
<td>$-4.68 \pm 0.99 \pm 0.24$</td>
<td>$-2.56 \pm 2.05 \pm 0.44$</td>
</tr>
<tr>
<td>\overline{A}_T (%)</td>
<td>$-3.29 \pm 0.99 \pm 0.24$</td>
<td>$-4.86 \pm 2.05 \pm 0.44$</td>
</tr>
<tr>
<td>$\hat{a}_P^{T\text{-odd}}$ (%)</td>
<td>$-3.98 \pm 0.70 \pm 0.17$</td>
<td>$-3.71 \pm 1.45 \pm 0.32$</td>
</tr>
<tr>
<td>$\hat{a}_{CP}^{T\text{-odd}}$ (%)</td>
<td>$-0.70 \pm 0.70 \pm 0.17$</td>
<td>$1.15 \pm 1.45 \pm 0.32$</td>
</tr>
</tbody>
</table>
Search for CPV in b-baryon decay $\Lambda_b \rightarrow p\pi\pi\pi$

Results in bins of phase space

TPA method

- Comparison wrt the previous result

- Compatibility at the level of 2.6σ checked with pseudo experiments
Search for CPV in b-baryon decay $Λ_b \rightarrow pπππ$

V. Tisserand, LHCb, LPC Clermont FD

Results in bins of phase space

TPA method

<table>
<thead>
<tr>
<th>Binning scheme</th>
<th>Dominant contribution</th>
<th>Hypothesis</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>$Λ_b^0 \rightarrow pa_1^-$</td>
<td>CP-conserving</td>
<td>9.8×10^{-2}</td>
</tr>
<tr>
<td>(helicity angles)</td>
<td></td>
<td>P-conserving</td>
<td>1.8×10^{-5}</td>
</tr>
<tr>
<td>A_2</td>
<td>$Λ_b^0 \rightarrow N^{*+}\pi^-$</td>
<td>CP-conserving</td>
<td>6.4×10^{-1}</td>
</tr>
<tr>
<td>(helicity angles)</td>
<td></td>
<td>P-conserving</td>
<td>6.4×10^{-2}</td>
</tr>
<tr>
<td>B</td>
<td>Entire sample</td>
<td>CP-conserving</td>
<td>5.0×10^{-3}</td>
</tr>
<tr>
<td>(in $</td>
<td>Φ</td>
<td>$)</td>
<td></td>
</tr>
<tr>
<td>B_1</td>
<td>$Λ_b^0 \rightarrow pa_1^-$</td>
<td>P-conserving</td>
<td>4.7×10^{-2}</td>
</tr>
<tr>
<td>(in $</td>
<td>Φ</td>
<td>$)</td>
<td></td>
</tr>
<tr>
<td>B_2</td>
<td>$Λ_b^0 \rightarrow N^{*+}\pi^-$</td>
<td>CP-conserving</td>
<td>3.4×10^{-3}</td>
</tr>
<tr>
<td>(in $</td>
<td>Φ</td>
<td>$)</td>
<td></td>
</tr>
</tbody>
</table>

5.5σ
2.9σ
Search for CPV in b-baryon decay $\Lambda_b \rightarrow p\pi\pi\pi$

Second Approach: Energy Test

- Model independent, statistical two-sample comparison technique
- Samples \rightarrow matter/antimatter events in the Phase Space
- $\psi(d_{ij}) = e^{-d_{ij}^2/2\delta^2}$: Weighting function
- n, \bar{n}: number of $\Lambda_b, \bar{\Lambda}_b$ candidates
- d_{ij}: distance in phase space
- δ: distance parameter to be optimized

\[T = \sum_{i,j>i}^{n} \frac{\psi_{ij}}{n(n-1)} + \sum_{i,j>i}^{\bar{n}} \frac{\psi_{ij}}{\bar{n}(\bar{n}-1)} - \sum_{i,j}^{n,\bar{n}} \frac{\psi_{ij}}{nn}, \]
Search for CPV in b-baryon decay $\Lambda_b \rightarrow p\pi\pi\pi$

Second Approach: Energy Test

- Going from sample (I to III) or (II to IV) constitutes a CP transformation
- Can look for CPV in two combinations:
 - P-even (I + II) vs (III + IV)
 - P-odd (I + IV) vs (II + III)
- P-violation: (I + III) vs (II + IV)
- By construction insensitive to global production and detection asymmetries
Search for CPV in b-baryon decay $\Lambda_b \rightarrow p\pi\pi\pi$

Sensitivity studies: Energy Test method choice of δ

Three values of δ chosen:

1. $13\text{GeV}^2/c^4$ - mean distance between events in the phase space
2. $2.7\text{GeV}^2/c^4$ - mean distance to the 600th nearest neighbour
3. $1.6\text{GeV}^2/c^4$ - mean distance to the 600th nearest neighbour with $m^2(p\pi^+\pi^-_{\text{slow}}) < 6\text{GeV}^2/c^4$

P-odd CPV included in $\sin(\phi)$ amplitude of the N^{*+} cascade topology
Search for CPV in b-baryon decay $\Lambda_b \rightarrow p\pi\pi\pi$

Energy Test results

- CP(P)-symmetry hypothesis (with permutation test)

<table>
<thead>
<tr>
<th>δ</th>
<th>$1.6 \text{ GeV}^2/c^4$</th>
<th>$2.7 \text{ GeV}^2/c^4$</th>
<th>$13 \text{ GeV}^2/c^4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-value (CP-conservation, P-even)</td>
<td>3.1×10^{-2}</td>
<td>2.7×10^{-3}</td>
<td>1.3×10^{-2}</td>
</tr>
<tr>
<td>p-value (CP-conservation, P-odd)</td>
<td>1.5×10^{-1}</td>
<td>6.9×10^{-2}</td>
<td>6.5×10^{-2}</td>
</tr>
<tr>
<td>p-value (P-conservation)</td>
<td>1.3×10^{-7}</td>
<td>4.0×10^{-7}</td>
<td>1.6×10^{-1}</td>
</tr>
</tbody>
</table>

- Permutation test to take into account LEE

 (Look Elsewhere Effect)

- Overall P-even CPV significance is at 2.8σ (taking into account LEE)

- P violation exceeds 5σ
Search for CPV in b-baryon decay $\Lambda_b \rightarrow p\pi\pi\pi$

- Visualise the regions where CPV is concentrated
- Select events that contribute mostly to the Test Statistic

N^* contribution

a_1 contribution

P-even CP-odd configuration

[LHCb-PAPER-2019-028]
Electrons at LHCb

Hardware trigger
Larger ECAL occupancy \rightarrow tighter thresholds for electrons:
- e $p_T > 2700/2400$ MeV in 2012/2016
- μ $p_T > 1700/1800$ MeV in 2012/2016

Mitigated by including events triggered independently of the signal (TIS)

→ analysis performed in 2 trigger categories

Interaction with detector material
Electrons radiate much more Bremsstrahlung

Recovery procedure in place

- miss some photons and add fake ones
- ECAL resolution worse than tracking
→ worse mass resolution for electron modes
Test of Lepton Universality (LU) in $\Lambda^0_b \rightarrow pK^-l^+l^-$

Simulation describes hadronic pK^- structure: phase-space in MC + PHOTOS final state QED radiation, rich structure in data. Correct MC following amplitude analysis of $\Lambda^0_b \rightarrow pKJ/\psi$ in data (Pentaquark discovery [PRL 115 (2015) 072001])

Selection adapted form $\Lambda^0_b \rightarrow \Lambda l^+l^-$ angular analysis [HEP 09 (2018) 146] and R_{K^*} LU Test [JHEP 08 (2017) 055]

- Preselection: p and p_T requirements, acceptance, PID
- Mass vetoes: $\phi, \Lambda_c, D^0, \gamma \rightarrow e^+e^-, B^+ \rightarrow K^+ll$ and $p \leftrightarrow K$ swaps
- BDT against combinatorial background using kinematic information suppresses ~97% of the bckgd while retaining ~85% of the signal
- Corrected mass cut against partially reconstructed backgrounds

in the region ($J/\psi \in [6,11]$ GeV2/c4):

- $0.1 < q^2 < 6$ GeV2/c4
- $m(pK) < 2.6$ GeV/c2

Bremsstrahlung effects in the ee channel (even with corrections)

Special electron/muon Hardware trigger
Corrections to simulation

- Hadronic pK⁻ structure: phase-space in MC, rich structure in data
 - correct MC following amplitude analysis of Λ_b → pKJ/ψ in data (Pentaquark discovery)
- Λ_b kinematics and lifetime
- Particle identification (PID) response
- Event multiplicity
- Trigger response

Very good agreement between data and MC after all the corrections

Efficiency extraction from corrected MC

Test of Lepton Universality (LU) in $\Lambda^0_b \rightarrow pK^-\ell^+\ell^-$

Selection and backgrounds

- **Preselection**: p and p_T requirements, acceptance, PID
- **Mass vetoes**: Φ, Λ_c, D^0, $\gamma \rightarrow e^+e^-$, $B^+ \rightarrow K^+\ell\ell$ and $p \leftrightarrow K^-$ swaps
- **BDT** against combinatorial background using kinematic information
 - trained on $\Lambda_b \rightarrow pK^-\ell\ell$ MC and data side-band: $m(pK^-\ell\ell) > 5825$ MeV/c2
 - separated BDTs for e and μ final states and run periods
 - suppress $\sim 97\%$ of the background while retaining $\sim 85\%$ of the signal
- **Corrected mass** cut against partially reconstructed backgrounds
 - for rare electron mode only

\[\alpha = \frac{p_T(pK)}{p_T(\text{ee})} \]
\[p_{\text{corr}}(\text{ee}) = \alpha \times p(\text{ee}) \]

JHEP 08 (2017) 055
Nonresonant modes: extracting R_{pK}^{-1}

Simultaneous fit to electron and muon mode, in various data-taking and trigger categories. Observables are fit parameters:

$$N^i(\Lambda_b^0 \to pK^- \mu^+ \mu^-) = r_B \times \frac{N^i(\Lambda_b^0 \to pK^+ J/\psi(\to \mu^+ \mu^-))}{\mathcal{B}(J/\psi \to \ell^+ \ell^-)} \times \frac{e^i(\Lambda_b^0 \to pK^- \mu^+ \mu^-)}{e^i(\Lambda_b^0 \to pK^- J/\psi(\to \mu^+ \mu^-))}$$

$$N^i(\Lambda_b^0 \to pK^- e^+ e^-) = R_{pK}^{-1} \times r_B \times \frac{N^i(\Lambda_b^0 \to pK^- J/\psi(\to e^+ e^-))}{\mathcal{B}(J/\psi \to \ell^+ \ell^-)} \times \frac{e^i(\Lambda_b^0 \to pK^- e^+ e^-)}{e^i(\Lambda_b^0 \to pK^- J/\psi(\to e^+ e^-))}$$

observables
- from resonant-mode fit
- from corrected MC
- from PDG

$$r_B \equiv \mathcal{B}(\Lambda_b^0 \to pK^- \mu^+ \mu^-)/\mathcal{B}(\Lambda_b^0 \to pK^- J/\psi)$$
Systematic uncertainties

R^{-1}_{pK} measurement statistically dominated, main systematic uncertainties:

- **Fit model**: partially reconstructed background shape in $\Lambda_b \rightarrow pK^\ast ee$
 - nominal: $\Lambda_b \rightarrow pK^\ast ee, K^\ast \rightarrow K\pi^0$; alternative: nonresonant $\Lambda_b \rightarrow pK\pi^0 ee$ decay

- **Corrections to simulation**: alternative binning, control modes, etc

- **Normalisation mode** uncertainties: yields and efficiencies

- **Others**: m_{corr} cut efficiency, q^2 migration
Systematic uncertainties

Uncertainty treatment depending on whether there is correlation between data taking and trigger categories:

- **uncorrelated**: gaussian constraints included in the mass fit
 - MC corrections, normalisation mode uncertainties

- **correlated**: gaussian smearing of likelihood profile
 - decay model corrections, fit model, m_{corr}, cut efficiency, q^2 migration
the very rare decay $K^0_s \rightarrow \mu^+\mu^-$

- Main background from $\pi \rightarrow \mu$ mis-ID (including decay in flight)
- Veto inelastic interactions with the detector material VELO and RF foil
- Use a Boosted decision tree MVA discriminator
 ➔ Analysis done in 10 bins of the classier for each trigger category (20 bins in total, as 2 types of L0 triggers: trigger on signal TOS or on the rest on the event TIS).

- For backgrounds description see back-up slides ($K^0_s \rightarrow \pi^+\pi^-$, $K^0_s \rightarrow \pi^-\mu^+\nu_\mu$, $K^0_L \rightarrow \mu^+\mu^- (\gamma)$...)

- Main systematic uncertainties comes from the determination of the trigger efficiency:

 Hardware trigger (L0): 11%
 Software trigger (HLT): 13%

- Total systematic varies between 19% and 23%, depending on the trigger category and BDT bin.
the very rare decay $K^0_S \rightarrow \mu^+\mu^-$

Backgrounds from other strange decays

- Irreducible background.
- $\mathcal{B}_{\text{eff.}} \left(K^0_L \rightarrow \mu^+\mu^- \right) \sim 10^{-11}$.
- 5 SM candidates expected in the final dataset.
- Considered in the di-muon mass fit.

- Very rare decays.
- Di-muon mass below the thresholds.

- For $K^0_S \rightarrow \mu^+\mu^-$ no candidates overpass the mass threshold.
- For $K^0_S \rightarrow \pi^+\pi^-$, applied a veto using the Armenteros-Podolanski plane [Phil. Mag. 45 (1954) 13].

- $\mathcal{B}_{\text{SM}} \left(K^0_S \rightarrow \mu^+\mu^-\gamma \right) = (1.45 \pm 0.27) \times 10^{-9}$
- $\mathcal{B} \left(K^0_L \rightarrow \mu^+\mu^-\gamma \right) = (3.59 \pm 0.11) \times 10^{-7}$
- Di-muon spectrum displaced to the left, no candidates in the fit region.
- $K^0_S \rightarrow \mu^+\mu^-\gamma\gamma$ even more suppressed.

<table>
<thead>
<tr>
<th>Decay</th>
<th>Branching fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K^0_L \rightarrow \mu^+\mu^-$</td>
<td>$(6.84 \pm 0.11) \times 10^{-9}$</td>
</tr>
<tr>
<td>$K^0 \rightarrow \mu^+\mu^-\gamma$</td>
<td>$9.4 \pm 0.6 \times 10^{-8}$</td>
</tr>
<tr>
<td>$K^+ \rightarrow \pi^+\mu^+\mu^-$</td>
<td>$2.2^{+1.8}_{-1.3} \times 10^{-8}$</td>
</tr>
<tr>
<td>$\Sigma^+ \rightarrow p\mu^+\mu^-$</td>
<td>$(63.9 \pm 0.5)%$</td>
</tr>
<tr>
<td>$\Lambda^0 \rightarrow p\pi$</td>
<td>$(1.57 \pm 0.35) \times 10^{-4}$</td>
</tr>
</tbody>
</table>

Values from [PDG]
the very rare decay $K^0_S \rightarrow \mu^+\mu^-$

Backgrounds from resonances

Decays from resonances have been considered as possible backgrounds [PDG]:

<table>
<thead>
<tr>
<th>Decay</th>
<th>Branching fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\omega (782) \rightarrow \pi^0 \mu^+\mu^-$</td>
<td>$(1.34 \pm 0.18) \times 10^{-4}$</td>
</tr>
<tr>
<td>$\eta \rightarrow \mu^+\mu^-\gamma$</td>
<td>$(3.1 \pm 0.4) \times 10^{-4}$</td>
</tr>
<tr>
<td>$\omega (782) \rightarrow \pi^0\pi^+\pi^-$</td>
<td>$(89.3 \pm 0.6)%$</td>
</tr>
<tr>
<td>$\eta \rightarrow \pi^+\pi^-\gamma$</td>
<td>$(4.22 \pm 0.08)%$</td>
</tr>
</tbody>
</table>

- These resonances decay promptly.
- Only those coming from c and b hadron decays could survive the trigger and selection requirements.
- Decays in the pionic mode are not visible in the $K^0_S \rightarrow \pi^+\pi^-$ selection.
- MC studies showed that none of them is expected to appear in the final selection.
the very rare decay $K^0_S \rightarrow \mu^+\mu^-$

Systematic uncertainties

Biggest systematic comes from the determination of the trigger efficiency:

- Hardware trigger (L0): 11%
- Software trigger (HLT): 13%

Other sources of systematic uncertainties are:

- Efficiency of the muon-identification, cross-checked using $J/\psi \rightarrow \mu^+\mu^-$ real and simulated data. Low statistics for low-p_T muons, so also need to use $K^0_S \rightarrow \pi\mu\nu$ to cross-check.
- Systematic on the correction for data-simulation differences.
- Efficiency ratio between $K^0_S \rightarrow \mu^+\mu^-$ and $K^0_S \rightarrow \pi^+\pi^-$.
- BDT response across the years.
- Determination of the no-bias trigger rates.

Total systematic varies between 19% and 23%, depending on the trigger category and BDT bin. Lowest values are in the TIS category and higher BDT bins.
Summary of the analysis strategy

Analysis using data from 2016, 2017 and 2018 using:

- Two trigger categories defined by the hardware trigger (L0):
 - TIS: candidates from triggered events where the signal decay \(K^0_S \rightarrow \mu^+ \mu^- \) could (or not) have satisfied the trigger requirements.
 - xT0S: candidates from events exclusively triggered due to the presence of the signal decay.

- HLT selection common for both trigger categories.

- Topological selections, followed by cuts in the Armenteros-Podolanski plane [Phil. Mag. 45 (1954) 13] to reduce contamination from \(\Lambda^0 \) decays.

- One BDT classifier trained for each trigger category (common across the years).

- Analysis done in 20 bins of the BDT classifiers.

- Use muon-identification optimized for strange decays.

- Normalization channel is \(K^0_S \rightarrow \pi^+ \pi^- \), taken from trigger-unbiased events.

- Fit to the di-muon invariant mass, calculating the limit on the branching fraction from the posterior probability.
LHCb upgrade schedule towards 50/fb and 300/fb in 12 and 20 years!

- Upgrade I a+b: 50 fb$^{-1}$ after Run 3+4 at $\mathcal{L} = 2 \times 10^{33}$ cm$^{-2}$s$^{-1}$
- Upgrade II: 300 fb$^{-1}$ after Run 5+6 at $\mathcal{L} = 2 \times 10^{34}$ cm$^{-2}$s$^{-1}$
- Full Belle 2 detector data taking starting 2019, 50 ab$^{-1}$ sample 2025
LHCb upgrade schedule phase 1

Software trigger

LHCb 2015 Trigger Diagram

40 MHz bunch crossing rate

L0 Hardware Trigger: 1 MHz readout, high E_T/P_T signatures

- 450 kHz h^\pm
- 400 kHz $\mu/\mu\mu$
- 150 kHz e/γ

Software High Level Trigger

- Partial event reconstruction, select displaced tracks/vertices and dimuons
- Buffer events to disk, perform online detector calibration and alignment
- Full offline-like event selection, mixture of inclusive and exclusive triggers
- 12.5 kHz (0.6 GB/s) to storage

LHCb Upgrade Trigger Diagram

30 MHz inelastic event rate (full rate event building)

Software High Level Trigger

- Full event reconstruction, inclusive and exclusive kinematic/geometric selections
- Buffer events to disk, perform online detector calibration and alignment
- Add offline precision particle identification and track quality information to selections
- Output full event information for inclusive triggers, trigger candidates and related primary vertices for exclusive triggers
- 2-5 GB/s to storage
LHCb: Trigger/detector upgrade phase 1 for Run 3 starting in 2021

- Removal of L0 bottleneck and move to full software trigger will increase efficiencies, by a factor of ~ 2 for hadronic modes
- Upgrade I replaces frontend electronics: readout at inelastic 30 MHz rate
- Far reaching detector upgrades to improve occupancy, radiation hardness
 - Vertex Locator → Pixel; Main trackers → SciFi Tracker, UT; RICH photodetectors
Physics case for an LHCb Upgrade II

Opportunities in flavour physics, and beyond, in the HL-LHC era

The LHCb collaboration

Abstract

The LHCb Upgrade II will fully exploit the flavour-physics opportunities of the HL-LHC, and study additional physics topics that take advantage of the forward acceptance of the LHCb spectrometer. The LHCb Upgrade I will begin operation in 2020. Consolidation will occur, and modest enhancements of the Upgrade I detector will be installed, in Long Shutdown 3 of the LHC (2025) and these are discussed here. The main Upgrade II detector will be installed in long shutdown 4 of the LHC (2030) and will build on the strengths of the current LHCb experiment and the Upgrade I. It will operate at a luminosity up to $2 \times 10^{34} \text{cm}^{-2}\text{s}^{-1}$, ten times that of the Upgrade I detector. New detector components will improve the intrinsic performance of the experiment in certain key areas. An Expression Of Interest proposing Upgrade II was submitted in February 2017. The physics case for the Upgrade II is presented here in more depth. CP-violating phases will be measured with precisions unattainable at any other envisaged facility. The experiment will probe $b \rightarrow s\ell^+\ell^-$ and $b \rightarrow d\ell^+\ell^-$ transitions in both muon and electron decays in modes not accessible at Upgrade I. Minimal flavour violation will be tested with a precision measurement of the ratio of $\mathcal{B}(B^0 \rightarrow \mu^+\mu^-)/\mathcal{B}(B^0_{s} \rightarrow \mu^+\mu^-)$. Probing charm CP violation at the 10^{-5} level may result in its long sought discovery. Major advances in hadron spectroscopy will be possible, which will be powerful probes of low energy QCD. Upgrade II potentially will have the highest sensitivity of all the LHC experiments on the Higgs to charm-quark couplings. Generically, the new physics mass scale probed, for fixed couplings, will almost double compared with the pre-HL-LHC era; this extended reach for flavour physics is similar to that which would be achieved by the HE-LHC proposal for the energy frontier.
Ideas for LHCb: upgrade Phase 2 (U2)

MAGNET STATIONS
New scintillating fiber stations on the inside of dipole magnet
Improved low-p_T tracking

MIGHTY TRACKER
New silicon stations around beamline for radiation hardness and granularity

TORCH
PID for p_T < 10 GeV with 15 ps timing
(70 ps per photon for ~30 photons)

MUON
Improved shielding and replacement of MWPC

Fine grained **calorimeter** with timing (<50 ps)
Table 10.1: Summary of prospects for future measurements of selected flavour observables for LHCb, Belle II and Phase-II ATLAS and CMS. The projected LHCb sensitivities take no account of potential detector improvements, apart from in the trigger. The Belle-II sensitivities are taken from Ref. [608].

<table>
<thead>
<tr>
<th>Observable</th>
<th>Current LHCb</th>
<th>LHCb 2025</th>
<th>Belle II</th>
<th>Upgrade II</th>
<th>ATLAS & CMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>EW Penguins</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(R_K (1 < q^2 < 6 \text{ GeV}^2\cdot c^4))</td>
<td>0.1 [274]</td>
<td>0.025</td>
<td>0.036</td>
<td>0.007</td>
<td>–</td>
</tr>
<tr>
<td>(R_{K^*} (1 < q^2 < 6 \text{ GeV}^2\cdot c^4))</td>
<td>0.1 [275]</td>
<td>0.031</td>
<td>0.032</td>
<td>0.008</td>
<td>–</td>
</tr>
<tr>
<td>(R_{\phi}, R_{\eta K}, R_{\pi})</td>
<td>–</td>
<td>0.08, 0.06, 0.18</td>
<td>–</td>
<td>0.02, 0.02, 0.05</td>
<td>–</td>
</tr>
<tr>
<td>CKM tests</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\gamma, \text{ with } B^0_s \to D^+_s K^-)</td>
<td>((\pm 1^\circ)) [136]</td>
<td>4(^\circ)</td>
<td>–</td>
<td>1(^\circ)</td>
<td>–</td>
</tr>
<tr>
<td>(\gamma, \text{ all modes})</td>
<td>((\pm 5.0^\circ)) [167]</td>
<td>1.5(^\circ)</td>
<td>1.5(^\circ)</td>
<td>0.35(^\circ)</td>
<td>–</td>
</tr>
<tr>
<td>(\sin 2\beta, \text{ with } B^0 \to J/\psi K^0_S)</td>
<td>0.04 [609]</td>
<td>0.011</td>
<td>0.005</td>
<td>0.003</td>
<td>–</td>
</tr>
<tr>
<td>(\phi_s, \text{ with } B^0_s \to J/\psi \phi)</td>
<td>49 mrad [44]</td>
<td>14 mrad</td>
<td>–</td>
<td>4 mrad</td>
<td>22 mrad [610]</td>
</tr>
<tr>
<td>(\phi_s, \text{ with } B^0_s \to D^+_s D^-_s)</td>
<td>170 mrad [49]</td>
<td>35 mrad</td>
<td>–</td>
<td>9 mrad</td>
<td>–</td>
</tr>
<tr>
<td>(\phi_{s s}, \text{ with } B^0_s \to \phi \phi)</td>
<td>154 mrad [94]</td>
<td>39 mrad</td>
<td>–</td>
<td>11 mrad</td>
<td>Under study [611]</td>
</tr>
<tr>
<td>(a_{s s}^d)</td>
<td>(33 \times 10^{-4}) [211]</td>
<td>(10 \times 10^{-4})</td>
<td>–</td>
<td>(3 \times 10^{-4})</td>
<td>–</td>
</tr>
<tr>
<td>(</td>
<td>V_{ub}</td>
<td>/</td>
<td>V_{cb}</td>
<td>)</td>
<td>6% [201]</td>
</tr>
<tr>
<td>(B^0_s, B^0 \to \mu^+ \mu^-)</td>
<td>90% [264]</td>
<td>34%</td>
<td>–</td>
<td>10%</td>
<td>21% [612]</td>
</tr>
<tr>
<td>(B(B^0 \to \mu^+ \mu^-)/B(B^0_s \to \mu^+ \mu^-))</td>
<td>22% [264]</td>
<td>8%</td>
<td>–</td>
<td>2%</td>
<td>–</td>
</tr>
<tr>
<td>(S_{\mu \mu})</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0.2</td>
<td>–</td>
</tr>
<tr>
<td>(b \to c \ell^- \bar{\nu}_\ell) LUV studies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(R(D^*))</td>
<td>0.026 [215,217]</td>
<td>0.0072</td>
<td>0.005</td>
<td>0.002</td>
<td>–</td>
</tr>
<tr>
<td>(R(J/\psi))</td>
<td>0.24 [220]</td>
<td>0.071</td>
<td>–</td>
<td>0.02</td>
<td>–</td>
</tr>
<tr>
<td>Charm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Delta A_{CP} (K^0 - \pi^0))</td>
<td>(8.5 \times 10^{-4}) [613]</td>
<td>(1.7 \times 10^{-4})</td>
<td>(5.4 \times 10^{-4})</td>
<td>(3.0 \times 10^{-5})</td>
<td>–</td>
</tr>
<tr>
<td>(A_T (\approx x \sin \phi))</td>
<td>(2.8 \times 10^{-4}) [240]</td>
<td>(4.3 \times 10^{-5})</td>
<td>(3.5 \times 10^{-4})</td>
<td>(1.0 \times 10^{-5})</td>
<td>–</td>
</tr>
<tr>
<td>(x \sin \phi) from (D^0 \to K^+ \pi^-)</td>
<td>(13 \times 10^{-4}) [228]</td>
<td>(3.2 \times 10^{-4})</td>
<td>(4.6 \times 10^{-4})</td>
<td>(8.0 \times 10^{-5})</td>
<td>–</td>
</tr>
<tr>
<td>(x \sin \phi) from multibody decays</td>
<td>–</td>
<td>((K3\pi)) (4.0 \times 10^{-5})</td>
<td>((K^0_{S} \pi \pi)) (1.2 \times 10^{-4})</td>
<td>((K3\pi)) (8.0 \times 10^{-6})</td>
<td>–</td>
</tr>
</tbody>
</table>