Medium-induced modification of Z-tagged charged particle yields in Pb+Pb collisions at 5.02 TeV with the ATLAS detector

The ATLAS Collaboration

The yield of charged particles opposite to a Z boson with large transverse momentum (p_T) is measured in 260 pb$^{-1}$ of pp and 1.7 nb$^{-1}$ of Pb+Pb collision data at 5.02 TeV per nucleon pair recorded with the ATLAS detector at the Large Hadron Collider. The Z boson tag is used to select hard-scattered partons with specific kinematics, and to observe how their showers are modified as they propagate through the quark–gluon plasma created in Pb+Pb collisions. Compared with pp collisions, charged-particle yields in Pb+Pb collisions show significant modifications as a function of charged-particle p_T in a way that depends on event centrality and Z boson p_T. The data are compared with a variety of theoretical calculations and provide new information about the medium-induced energy loss of partons in a p_T regime difficult to measure through other channels.
Collisions of heavy nuclei at ultrarelativistic energies at the Large Hadron Collider (LHC) and the Relativistic Heavy Ion Collider (RHIC) are understood to produce an extended region of hot and dense matter where partons exist in a deconfined state known as the quark–gluon plasma (QGP). The high density of unscreened color charges in the QGP causes the showers of hard-scattered partons with large transverse momentum (p_T) to be modified as they traverse the medium [1]. These modifications are observed in measurements of dijet and photon–jet momentum imbalance [2–5], and in jet fragmentation functions [6, 7].

The large integrated luminosity of Pb+Pb collisions delivered during LHC Run 2 has enabled measurements of jets produced in association with a high-p_T Z boson. At leading order, the Z boson and the jet are produced back-to-back in the azimuthal plane, with equal p_T. Since Z bosons and their decay leptons, or similarly, photons, do not participate in the strong interaction and are not modified by the QGP [8, 9], they provide an estimate of the p_T and azimuthal direction of the partner hard-scattered parton before the developing shower is modified through interactions with the QGP [10, 11]. Measurements of photon-tagged fragmentation functions at the LHC [12, 13] and photon–hadron correlations at RHIC [14, 15] used this feature to perform detailed studies of jet quenching. At fixed p_T, jets balancing Z bosons and photons arise from processes with different Q^2, and can test the sensitivity of the energy loss process to parton virtuality. Additionally, the use of isolated photons at low photon-p_T ($\lesssim 60$ GeV) is difficult due to the large hadron-decay background, motivating the use of Z bosons. A measurement of Z+jet production with $p_T^Z > 60$ GeV by CMS demonstrates that the total p_T carried inside the jet cone is decreased in Pb+Pb events compared with that in pp events [16]. However, the modification of the jet’s constituent particle p_T distributions, or any lower p_T selections, have not yet been studied.

This Letter presents a measurement of the yield of charged particles produced opposite in azimuth to a Z boson with $p_T^Z > 15$ GeV in Pb+Pb and pp collisions at a nucleon–nucleon center-of-mass energy $\sqrt{s_{NN}} = 5.02$ TeV with the ATLAS detector at the LHC. The Pb+Pb and pp data were recorded in 2018 and 2017, respectively, and correspond to integrated luminosities of up to 1.7 nb$^{-1}$ and 260 pb$^{-1}$. The charged particles are required to have $p_T^{ch} > 1$ GeV and be approximately back-to-back with the Z boson in the transverse plane\(^1\), with azimuthal separation $\Delta \phi$ larger than $3\pi/4$. In simulations of pp collisions, particles meeting these criteria reside primarily in the leading jet azimuthally opposite to the Z boson. The per-Z yields of charged particles, N_{ch}, are reported as a function of p_T^{ch}, $(1/N_Z) \left(d^2N_{ch}/dp_T^{ch}d\Delta \phi \right)$, in pp and Pb+Pb collisions. To quantify the modification resulting from the partons' propagation through the QGP, the ratio of particle yields between Pb+Pb and pp collisions, I_{AA}, is reported and compared with the expectations from theoretical calculations. This measurement explores phenomena similar to those in measurements of the photon-tagged jet fragmentation function [12]. However, requiring a reconstructed jet may result in a bias towards events with less energy loss than average [17–19]. Since there is no such requirement in this measurement, it provides additional insight into energy loss in an unbiased way, at low $p_T^{Z/\gamma}$ values which have not yet been measured at the LHC and where theoretical models have not been tested.

The ATLAS experiment [20] is a multipurpose particle detector with a forward–backward symmetric cylindrical geometry and a near 4π coverage in solid angle. It consists of an inner tracking detector surrounded by a superconducting solenoid providing a 2 T axial magnetic field, electromagnetic and hadron calorimeters, and a muon spectrometer. The inner tracking detector covers the pseudorapidity range

\(^1\) ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector and the z-axis along the beam pipe. Cylindrical coordinates (r, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the z-axis. The pseudorapidity is defined in terms of the polar angle θ as $\eta = -\ln \tan(\theta/2)$.

2
|\eta| < 2.5. It consists of silicon pixel, silicon microstrip, and transition radiation tracking detectors [21, 22]. Lead/liquid-argon (LAr) sampling calorimeters provide electromagnetic (EM) energy measurements with high granularity. A steel/scintillator-tile hadron calorimeter covers the central pseudorapidity range (|\eta| < 1.7). Liquid-argon calorimeters with separate EM and hadronic compartments instrument the endcap (up to |\eta| = 3.2) and forward (FCal, up to |\eta| = 4.9) regions. The muon spectrometer surrounds the calorimeters and includes three air-core toroidal superconducting magnets with field integrals ranging between 2.0 and 6.0 Tm, a system of precision tracking chambers, and fast detectors for triggering. During Pb+Pb data-taking, the muon system was operational for only 1.4 nb\(^{-1}\) of the total integrated luminosity. Thus the dimuon channel is analyzed only in this subset of data.

Events with a high-\(p_T\) electron or muon are initially selected for analysis by the single-lepton triggers described in Refs. [23, 24]. The centrality of Pb+Pb events is defined using the total transverse energy measured in the FCal [4, 25], \(\Sigma E_T^{\text{Pb}}\). Pb+Pb events are divided into three categories which correspond to the 0–10%, 10–30%, and 30–80% centrality intervals in minimum-bias (MB) events, the smaller values indicating larger nuclear overlap regions and thus larger, hotter QGP regions. The orientation of the underlying event (UE) elliptic flow is determined from the azimuthal distribution of the FCal energy [26, 27]. In \(pp\) events, the average number of interactions per bunch crossing ranged from 2 to 4, and thus all charged-particle tracks are required to originate from the primary reconstructed vertex [28].

Monte Carlo simulations of \(\sqrt{s} = 5.02\,\text{TeV}\) \(pp\) collisions with Z bosons decaying in the dielectron and dimuon channels, as well as data-driven studies, are used to correct the data for bin migration and reconstruction inefficiencies. Generated events were passed through a Geant4 simulation [29, 30] of the ATLAS detector under the same conditions present during data-taking and were digitized and reconstructed in the same way as the data. The Z boson events were generated at next-to-leading order (NLO) with the Powheg-Box v2 program [31–34] interfaced to the Pythia 8.186 parton shower model [35]. The NLO CT10 parton distribution function (PDF) set [36] was used in the matrix element, while the CTEQ6L1 PDF set [37] and the AZNLO tuned set of parameters [38] were used to model the parton shower.

Four million events were generated to serve as the simulation sample for \(pp\) collisions. To model Pb+Pb events, fifteen million simulated \(pp\) events were overlaid at the detector-hit level with MB Pb+Pb events in \(pp\) data. This data-overlay sample was reweighted on an event-by-event basis to match the \(\Sigma E_T^{\text{Pb}}\) distribution for Pb+Pb events containing Z bosons.

The Z bosons in \(pp\) and Pb+Pb events are reconstructed in opposite-sign dielectron and dimuon decay channels using procedures similar to those described in Refs. [9, 39]. Reconstructed electrons are required to have a transverse momentum \(p_T^{e} > 20\,\text{GeV}\), to lie within the fiducial acceptance of the EM barrel (|\(\eta^e| < 1.37\)) or endcap (1.52 < |\(\eta^e| < 2.47\)) detectors, and to satisfy “loose” likelihood-based identification criteria, which have been optimized separately for \(pp\) and Pb+Pb events [40]. Reconstructed muons are required to have a transverse momentum \(p_T^{\mu} > 20\,\text{GeV}\), to lie within the fiducial acceptance of the muon spectrometer (|\(\eta^\mu| < 2.5\)), and to pass the “medium” selection requirements described in Ref. [41]. The \(Z \to \ell\ell\) candidates are required to be within the mass range 76 < \(m_{\ell\ell}\) < 106 GeV and have \(p_T^Z > 15\,\text{GeV}\). This selection ensures that the contribution from multijet and other backgrounds is smaller than 1.5% (0.1%) for the dielectron (dimuon) channel, and is considered negligible. In total, these criteria select approximately 21 000 (28 000) \(Z \to ee\) (\(Z \to \mu\mu\)) events in \(pp\) data, and 3400 (4100) events in Pb+Pb data.

Each Z data event is assigned a series of weights, derived from simulation and data, to account for the trigger, reconstruction and selection efficiencies of its decay leptons. Individual lepton trigger efficiencies are determined directly in \(pp\) and Pb+Pb data using tag-and-probe techniques [23, 24], and are 0.70–0.80...
for each muon and 0.75–0.95 for each electron. Reconstruction and selection efficiencies are determined using simulation and are 0.65–0.80 for muons and 0.65–0.95 for electrons. Although the efficiencies may vary substantially with the individual lepton p_T, η and ϕ, the resulting dependence on p_T^Z is weak due to the large Z mass and weak correlation between bosons and their decay leptons.

Charged-particle tracks are reconstructed from hits in the inner detector using an algorithm [42] which, in Pb+Pb collisions, is optimized for the high-occupancy conditions [43]. They are required to meet several criteria intended to select primary charged particles [6]. All reconstructed tracks with $p_T > 1$ GeV, $|\eta| < 2.5$ and $\Delta\phi > 3\pi/4$ are considered. The charged-particle yield is corrected for reconstruction and selection inefficiency on a per-track basis using a simulation-derived efficiency which varies from 0.6 to 0.8 depending on both detector occupancy and track kinematics. A small correction, typically 1–2%, accounts for the contribution of reconstructed tracks not associated with primary particles. The p_t^{ch} resolution is found to have a negligible effect ($\lesssim 0.3\%$) on the results and is not corrected for.

The contribution to the yield from UE particles in Pb+Pb collisions is estimated using MB events and is statistically subtracted from the measured yields. For each Z event in data, 40–160 unique MB events with a matching centrality are used for this estimation. Furthermore, to match any azimuthal modulation of the UE, the elliptic flow angles [27] in the Z data event and in the matching MB event must match within $\pi/16$. The signal-to-background ratio varies strongly with p_t^{ch}, p_T^Z, and Pb+Pb centrality, with a minimum of 5×10^{-3} at the lowest p_t^{ch} and p_T^Z values in the most central events. In pp events, the UE is known to have larger activity in a Z event than in an ordinary MB pp collision [44, 45], necessitating a different procedure. Here, the UE is determined in events with $1 < p_T^Z < 12$ GeV in the azimuthal region perpendicular to the Z boson to avoid the contribution from jet particles.

The data are further corrected for bin migration resulting from the finite resolution in the p_T^Z measurement. This is evaluated by comparing the per-Z charged-particle yields, where the Z selection is made at the generator level, with those after reconstruction, and is typically a 2–3% correction.

The primary sources of systematic uncertainty in the yield measurement are those affecting the Z boson reconstruction, those affecting the charged-particle selection, and those affecting the UE background estimation and subtraction. The uncertainties associated with the electron and muon energy scales are evaluated using a common set of uncertainties [41, 46], and are typically negligible ($\lesssim 1\%$) except at high p_t^{ch}. Those associated with lepton trigger and selection efficiency determination are smaller than the ones related to the energy scale. Several sources of tracking-related uncertainty are considered, which are described in previous measurements of charged-particle fragmentation functions [6, 47]. Of these, the largest uncertainty is the sensitivity to the track selection criteria, which is 2–3%.

The uncertainty in the determination of the UE background yield is evaluated by propagating the statistical uncertainty of the UE estimation in MB events. The sensitivity of the UE estimation to the matching criteria for the elliptic or triangular flow [26] angles between signal and MB events is investigated. However, since these variations give statistically compatible results, they are not included. As a check of the background subtraction procedure, the full analysis is performed on simulated Z events overlaid with Hijing [48] Pb+Pb background, and compared with the generator-level distributions. An absolute uncertainty in the background estimation of 0.3% is derived using this study.

Finally, an internal consistency check is performed by comparing the per-Z yields between the electron and muon decay channels. In p_T^Z and centrality selections where a difference is observed, an uncertainty of up to 4% in pp and up to 14% in Pb+Pb is included.
For the yields at low p_T^{ch} and in central events, the uncertainty from the UE determination is dominant and can be as large as 30%. For yields at high p_T^{ch} and in lower-multiplicity events, the uncertainties associated with the tracking efficiency are typically dominant, and as large as 5%. In all cases, the statistical uncertainty is larger than the total systematic uncertainty.

Figure 1 presents the charged-particle yield per Z boson, in Pb+Pb and pp events, as a function of p_T^{ch}. The yields in Pb+Pb collisions are observed to be modified relative to those in pp collisions. To better reveal the modification, Figure 2 presents I_{AA} values, the ratios of yields in Pb+Pb events to those in pp events. The I_{AA} values are suppressed below unity at large p_T^{ch}, with a systematically larger suppression in more central events and for lower p_T^{Z} selections. At low p_T^{ch}, less than 2–3 GeV, the I_{AA} values are typically greater than unity, although the uncertainties limit the precision with which this enhancement can be measured. The suppression over a wide range of p_T^{ch} values, and the general enhancement of the I_{AA} above unity at lower p_T^{ch}, are qualitatively similar to those observed in the ratios of jet fragmentation functions in photon-tagged events [12].

Figure 3 compares the I_{AA} in 0–10% Pb+Pb events with the following theoretical calculations, where available, which use the same kinematic selections as the data: (1) a perturbative calculation within the framework of soft-collinear effective field theory with Glauber gluons (SCET$_G$) in the soft-gluon-emission (energy-loss) limit, with jet-medium coupling $g = 2.0 \pm 0.2$ [49, 50]; (2) the Hybrid Strong/Weak Coupling model [51], which combines initial production using PYTHIA 8 with a parameterization of energy loss derived from holographic methods, including back-reaction effects; (3) JEWEL, an MC event generator which simulates QCD jet evolution in heavy-ion collisions, including radiative and elastic energy loss processes, and configured to include medium recoils [52]; and (4) a coupled linearized Boltzmann transport (CoLBT) and hydrodynamics model [53, 54], which includes jet-induced medium excitations. All models qualitatively reproduce the degree of suppression at large p_T^{ch}, greater than 10 GeV. The Hybrid model, JEWEL and CoLBT qualitatively capture the increase at low p_T^{ch}. Several of these models also capture the relative difference in the I_{AA} between the three p_T^{Z} selections. A full evaluation of theoretical uncertainties is needed to further discriminate between the mechanisms of energy loss and medium response in the data.
Figure 1: Charged-particle yield per Z boson as a function of p^T_{ch}, reported for $15 < p^Z_T < 30 \text{ GeV}$, $30 < p^Z_T < 60 \text{ GeV}$, and $p^Z_T > 60 \text{ GeV}$. Results are shown for pp events and the three centralities of Pb+Pb events. These are offset horizontally around the bin centers, which are located between the 0–10% and 10–30% points, for visibility. The vertical bars and boxes correspond to the statistical and systematic uncertainties of the data.

Figure 2: Ratio of the charged-particle yield in Pb+Pb collisions to that in pp collisions, I_{AA}, as a function of charged-particle p^T_{ch}. The vertical bars and boxes correspond to the statistical and systematic uncertainties of the data. The 0–10% and 30–80% data are offset horizontally for visibility.
Figure 3: The I_{AA} ratio as a function of p_T^Z in data compared with theoretical calculations (see text). The vertical bars and boxes correspond to the statistical and systematic uncertainties, while the shaded bands represent the theoretical uncertainty (statistical for JEWEL, Hybrid, and CoLBT-hydro, parametric for SCET). The I_{AA} is shown for 0–10% Pb+Pb events for $p_T^Z = 15–30$ GeV (left), 30–60 GeV (center) and > 60 GeV (right).

In conclusion, this Letter presents a measurement of charged-particle yields produced in the azimuthal direction opposite to a Z boson with $p_T > 15$ GeV. The measurement is performed using 260 pb$^{-1}$ of pp and up to 1.7 nb$^{-1}$ of Pb+Pb collision data at 5.02 TeV with the ATLAS detector at the Large Hadron Collider. The per-Z yields are systematically modified in Pb+Pb collisions compared with pp collisions due to the interactions between the parton shower and the hot and dense QGP medium. The charged-particle p_T distribution in Pb+Pb collisions is softer than that in pp collisions, with a suppression at high p_T^ch and an enhancement at low p_T^ch. The degree of modification varies with Pb+Pb event centrality, consistent with a larger and hotter QGP being created in more central events. At high p_T^Z, the modification pattern is qualitatively similar to that observed in measurements of photon-tagged jet fragmentation functions. In addition to the particular theoretical comparisons presented here, the data will allow systematic tests of models across centrality and p_T^Z selections, including tests of energy loss for low-p_T partons that are otherwise difficult to access experimentally.

Acknowledgments

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS and CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF and MPG, Germany; GSRT, Greece; RGC and Hong Kong SAR, China; ISF and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russia Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden;
SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, CANARIE, Compute Canada and CRC, Canada; ERC, ERDF, Horizon 2020, Marie Skłodowska-Curie Actions and COST, European Union; Investissements d’Avenir Idex and ANR, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF, Greece; BSF-NSF and GIF, Israel; La Caixa Banking Foundation, CERCA Programme Generalitat de Catalunya and PROMETEO and GenT Programmes Generalitat Valenciana, Spain; Göran Gustafssons Stiftelse, Sweden; The Royal Society and Leverhulme Trust, United Kingdom.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [55].

References

The ATLAS Collaboration

G. Aad102, B. Abbott128, D.C. Abbott103, A. Abed Abd36, K. Abeling53, D.K. Abhayasinghe94, S.H. Abidi55, O.S. AbouZeid85, N.L. Abraham55, H. Abramowicz159, H. Abreu189, Y. Abulaiti6, B.S. Acharya166, L. Adam36, C. Adam Bourdarios84a, L. Adamczyk84a, L. Adamek166, J. Adelman121, M. Adersberger114, A. Adiguzel2c, S. Adorni54, T. Adye143, A.A. Affolder145, Y. Afik159, C. Agapopoulou65, M.N. Agaras38, A. Aggarwal119, C. Agheorghiesei2d, J.A. Aguilar-Saavedra139a,ab, A. Ahmad36, F. Ahmadov80, W.S. Ahmed104, X. Ai18, G. Aielli74a,74b, S. Akatsuka86, M. Akbiyik100, T.P.A. Åkesson77, E. Akiki54, A.V. Akimov111, K. Al Khoury65, G.L. Alberghi135, M.J. Alconada Verzini166, S. Alderweireldt80, M. Aleksa36, I.N. Aleksandrov80, C. Alexa28b, T. Alexopoulos10, A. Alfonso213, F. Alfonso10, F. Alfonso89, C. Alpigiani147, E. Al potrzebna174a,74b, M. Alvarez Estève59, G. Alviggi70a,70b, Y. Amaral Coutinho81b, A. Ambler104, L. Ambroz134, C. Amelung36, D. Amidei106, S.P. Amor Dos Santos139a, S. Amoroso46, C.S. Amrouche85, F. An79, C. Anastopoulos148, N. Andari144, T. Andeen51, J.K. Anders20, S.Y. Andrean85a,45b, A. Andreazza69a,69b, V. Andrei61a, C.R. Anellis175, S. Angelidakis9, A. Angerami39, A.V. Aisenenko122b,122a, A. Annovi72a, C. Antel54, M.T. Anthony148, E. Antipov129, M. Antonelli51, D.J.A. Antim18, F. Anulli73a, M. Aoki82, J.A. Aparisi Pozo173, M.A. Aparisi Pozo173, L. Aperio Bella46, N. Aranazabal Barrio36, V. Araujo Ferraz81a, R. Arauzo Pereira81b, C. Arca Fernandez18, A. Th. Arce49, F. A. Arduh48, J.F. Arguin111, S. Argyropoulos52, J.-H. Arling41, A.J. Armbuster46, A. Armstrong170, O. Arnaez66, H. Arnold120, Z.P. Arrubarrena Tame114, G. Artoni134, H. Asada117, K. Asai126, S. Asai162, T. Asawatavonvanich64, N. Asab79, E.M. Asimakopoulou171, L. Asquith155, J. Assah15d, K. Assamagan26b, R. Astalos20a, R.J. Atkin133a, M. Atkinson172, N.B. Atlay9, H. Atmani65, P.A. Atmasidha106, K. Augsten141, V.A. Austrup181, G. Avolio36, M.K. Ayoub15a, G. Azuelos5a,5b, D. Babal…

1Department of Physics, University of Adelaide, Adelaide; Australia.
2Physics Department, SUNY Albany, Albany NY; United States of America.
3Department of Physics, University of Alberta, Edmonton AB; Canada.
4(I)Department of Physics, Ankara University, Ankara; (II)Istanbul Aydin University, Application and Research Center for Advanced Studies, Istanbul; (c)Division of Physics, TOBB University of Economics and Technology, Ankara; Turkey.
5LAPP, Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS/IN2P3, Annecy; France.
6High Energy Physics Division, Argonne National Laboratory, Argonne IL; United States of America.
7Department of Physics, University of Arizona, Tucson AZ; United States of America.
8Department of Physics, University of Texas at Arlington, Arlington TX; United States of America.
9Physics Department, National and Kapodistrian University of Athens, Athens; Greece.
10Physics Department, National Technical University of Athens, Zografou; Greece.
11Department of Physics, University of Texas at Austin, Austin TX; United States of America.
12(I)Bahcesehir University, Faculty of Engineering and Natural Sciences, Istanbul; (II)Istanbul Bilgi University, Faculty of Engineering and Natural Sciences, Istanbul; (I)Department of Physics, Bogazici University, Istanbul; (II)Department of Physics Engineering, Gaziantep University, Gaziantep; Turkey.
13Institute of Physics, Azerbaijan Academy of Sciences, Baku; Azerbaijan.
14Institut de Física d’Altes Energies (IAFE), Barcelona Institute of Science and Technology, Barcelona; Spain.
15(I)Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (II)Physics Department, Tsinghua University, Beijing; (I)Department of Physics, Nanjing University, Nanjing; (II)University of Chinese Academy of Sciences (UCAS), Beijing; China.
16Institute of Physics, University of Belgrade, Belgrade; Serbia.
17Department for Physics and Technology, University of Bergen, Bergen; Norway.
18Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley CA; United States of America.
19Institut für Physik, Humboldt Universität zu Berlin, Berlin; Germany.
20Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern; Switzerland.
21School of Physics and Astronomy, University of Birmingham, Birmingham; United Kingdom.
22(I)Facultad de Ciencias y Centro de Investigaciones, Universidad Antonio Nariño, Bogotá; (II)Departamento de Física, Universidad Nacional de Colombia, Bogotá, Colombia; Colombia.
23(I)INFN Bologna and Universita’ di Bologna, Dipartimento di Fisica; (II)INFN Sezione di Bologna; Italy.
24Physikalisches Institut, Universität Bonn, Bonn; Germany.
25Physics Department, Boston University, Boston MA; United States of America.
26(I)University of Colorado Boulder, Department of Physics, Colorado; (II)Physics Department, Brookhaven National Laboratory, Upton NY; United States of America.
27Department of Physics, Brandeis University, Waltham MA; United States of America.
28(I)Transilvania University of Brasov, Brasov; (II)Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest; (I)Department of Physics, Alexandru Ioan Cuza University of Iasi, Iasi; (II)National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj-Napoca; (I)University Politehnica Bucharest, Bucharest; (II)West University in Timisoara, Timisoara; Romania.
29(I)Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava; (II)Department of
Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice; Slovak Republic.

30 Departamento de Física, Universidad de Buenos Aires, Buenos Aires; Argentina.
31 California State University, CA; United States of America.
32 Cavendish Laboratory, University of Cambridge, Cambridge; United Kingdom.
33 (a) Department of Physics, University of Cape Town, Cape Town; (b) Thembelaba Labs, Western Cape; (c) Department of Mechanical Engineering Science, University of Johannesburg, Johannesburg; (d) University of South Africa, Department of Physics, Pretoria; (e) School of Physics, University of the Witwatersrand, Johannesburg; South Africa.
34 Department of Physics, Carleton University, Ottawa ON; Canada.
35 (a) Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies - Université Hassan II, Casablanca; (b) Faculté des Sciences, Université Ibn-Tofail, Kénitra; (c) Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech; (d) Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda; (e) Faculté des sciences, Université Mohammed V, Rabat; Morocco.
36 CERN, Geneva; Switzerland.
37 Enrico Fermi Institute, University of Chicago, Chicago IL; United States of America.
38 LPC, Université Clermont Auvergne, CNRS/IN2P3, Clermont-Ferrand; France.
39 Nevis Laboratory, Columbia University, Irvington NY; United States of America.
40 Niels Bohr Institute, University of Copenhagen, Copenhagen; Denmark.
41 (a) Dipartimento di Fisica, Università della Calabria, Rende; (b) INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati; Italy.
42 Physics Department, Southern Methodist University, Dallas TX; United States of America.
43 Physics Department, University of Texas at Dallas, Richardson TX; United States of America.
44 National Centre for Scientific Research "Demokritos", Agia Paraskevi; Greece.
45 (a) Department of Physics, Stockholm University; (b) Oskar Klein Centre, Stockholm; Sweden.
46 Deutsches Elektronen-Synchrotron DESY, Hamburg and Zeuthen; Germany.
47 Lehrstuhl für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund; Germany.
48 Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden; Germany.
49 Department of Physics, Duke University, Durham NC; United States of America.
50 SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh; United Kingdom.
51 INFN e Laboratori Nazionali di Frascati, Frascati; Italy.
52 Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Freiburg; Germany.
53 II. Physikalisches Institut, Georg-August-Universität Göttingen, Göttingen; Germany.
54 Département de Physique Nucléaire et Corpusculaire, Université de Genève, Genève; Switzerland.
55 (a) Dipartimento di Fisica, Università di Genova, Genova; (b) INFN Sezione di Genova; Italy.
56 II. Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen; Germany.
57 SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow; United Kingdom.
58 LPSC, Université Grenoble Alpes, CNRS/IN2P3, Grenoble INP, Grenoble; France.
59 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge MA; United States of America.
60 (a) Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei; (b) Institute of Frontier and Interdisciplinary Science and Key Laboratory of Particle Physics and Particle Irradiation (MOE), Shandong University, Qingdao; (c) School of Physics and Astronomy, Shanghai Jiao Tong University, KLPPAC-MoE, SKLPPC, Shanghai; (d) Tsung-Dao Lee Institute, Shanghai; China.
61 (a) Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (b) Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg; Germany.
Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima; Japan.

Department of Physics, Chinese University of Hong Kong, Shatin, N.T., Hong Kong;
Department of Physics, University of Hong Kong, Hong Kong;
Department of Physics and Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong; China.

Department of Physics, National Tsing Hua University, Hsinchu; Taiwan.

IJCLab, Université Paris-Saclay, CNRS/IN2P3, 91405, Orsay; France.

Department of Physics, Indiana University, Bloomington IN; United States of America.

INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine; ICTP, Trieste; Dipartimento Politecnico di Ingegneria e Architettura, Università di Udine, Udine; Italy.

INFN Sezione di Lecce; Dipartimento di Matematica e Fisica, Università del Salento, Lecce; Italy.

INFN Sezione di Milano; Dipartimento di Fisica, Università di Milano, Milano; Italy.

INFN Sezione di Napoli; Dipartimento di Fisica, Università di Napoli, Napoli; Italy.

INFN Sezione di Pavia; Dipartimento di Fisica, Università di Pavia, Pavia; Italy.

INFN Sezione di Pisa; Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa; Italy.

INFN Sezione di Roma; Dipartimento di Fisica, Sapienza Università di Roma, Roma; Italy.

INFN Sezione di Roma Tor Vergata; Dipartimento di Fisica, Università di Roma Tor Vergata, Roma; Italy.

INFN Sezione di Roma Tre; Dipartimento di Matematica e Fisica, Università Roma Tre, Roma; Italy.

INFN-TIFPA; Università degli Studi di Trento, Trento; Italy.

Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck; Austria.

University of Iowa, Iowa City IA; United States of America.

Department of Physics and Astronomy, Iowa State University, Ames IA; United States of America.

Joint Institute for Nuclear Research, Dubna; Russia.

Departamento de Engenharia Elétrica, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora; Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro; Universidade Federal de São João del Rei (UFSJ), São João del Rei; Instituto de Física, Universidade de São Paulo, São Paulo; Brazil.

KEK, High Energy Accelerator Research Organization, Tsukuba; Japan.

Graduate School of Science, Kobe University, Kobe; Japan.

AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow; Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow; Poland.

Institute of Nuclear Physics Polish Academy of Sciences, Krakow; Poland.

Faculty of Science, Kyoto University, Kyoto; Japan.

Kyoto University of Education, Kyoto; Japan.

Research Center for Advanced Particle Physics and Department of Physics, Kyushu University, Fukuoka; Japan.

Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata; Argentina.

Physics Department, Lancaster University, Lancaster; United Kingdom.

Oliver Lodge Laboratory, University of Liverpool, Liverpool; United Kingdom.

Department of Experimental Particle Physics, Jozef Stefan Institute and Department of Physics, University of Ljubljana, Ljubljana; Slovenia.

School of Physics and Astronomy, Queen Mary University of London, London; United Kingdom.

Department of Physics, Royal Holloway University of London, Egham; United Kingdom.

Department of Physics and Astronomy, University College London, London; United Kingdom.

Louisiana Tech University, Ruston LA; United States of America.

Fysiska institutionen, Lunds universitet, Lund; Sweden.

Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules (IN2P3),
Villeurbanne; France.

99 Departamento de Física Teórica C-15 and CIAFF, Universidad Autónoma de Madrid, Madrid; Spain.

100 Institut für Physik, Universität Mainz, Mainz; Germany.

101 School of Physics and Astronomy, University of Manchester, Manchester; United Kingdom.

102 CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille; France.

103 Department of Physics, University of Massachusetts, Amherst MA; United States of America.

104 Department of Physics, McGill University, Montreal QC; Canada.

105 School of Physics, University of Melbourne, Victoria; Australia.

106 Department of Physics, University of Michigan, Ann Arbor MI; United States of America.

107 Department of Physics and Astronomy, Michigan State University, East Lansing MI; United States of America.

108 B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk; Belarus.

109 Research Institute for Nuclear Problems of Byelorussian State University, Minsk; Belarus.

110 Group of Particle Physics, University of Montreal, Montreal QC; Canada.

111 P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow; Russia.

112 National Research Nuclear University MEPhI, Moscow; Russia.

113 D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow; Russia.

114 Fakultät für Physik, Ludwig-Maximilians-Universität München, München; Germany.

115 Nagasaki Institute of Applied Science, Nagasaki; Japan.

116 Graduate School of Science and Kobayashi-Maskava Institute, Nagoya University, Nagoya; Japan.

117 Department of Physics and Astronomy, University of New Mexico, Albuquerque NM; United States of America.

118 Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen; Netherlands.

119 Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam; Netherlands.

120 Department of Physics, Northern Illinois University, DeKalb IL; United States of America.

121 Budker Institute of Nuclear Physics and NSU, SB RAS, Novosibirsk; Novosibirsk; Russia.

122 Institute for High Energy Physics of the National Research Centre Kurchatov Institute, Protvino; Russia.

123 Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of National Research Centre "Kurchatov Institute", Moscow; Russia.

124 Department of Physics, New York University, New York NY; United States of America.

125 Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo; Japan.

126 Ohio State University, Columbus OH; United States of America.

127 Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman OK; United States of America.

128 Department of Physics, Oklahoma State University, Stillwater OK; United States of America.

129 Palacký University, RCPTM, Joint Laboratory of Optics, Olomouc; Czech Republic.

130 Institute for Fundamental Science, University of Oregon, Eugene, OR; United States of America.

131 Graduate School of Science, Osaka University, Osaka; Japan.

132 Department of Physics, University of Oslo, Oslo; Norway.

133 Department of Physics, Oxford University, Oxford; United Kingdom.

134 LPNHE, Sorbonne Université, Université de Paris, CNRS/IN2P3, Paris; France.

135 Department of Physics, University of Pennsylvania, Philadelphia PA; United States of America.
Konstantinov Nuclear Physics Institute of National Research Centre "Kurchatov Institute", PNPI, St. Petersburg; Russia.

Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh PA; United States of America.

Laboratório de Instrumentação e Física Experimental de Partículas - LIP, Lisboa; Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Lisboa; Departamento de Física, Universidade de Coimbra, Coimbra; Centro de Física Nuclear da Universidade de Lisboa, Lisboa; Departamento de Física, Universidade do Minho, Braga; Departamento de Física Teórica y del Cosmos, Universidad de Granada, Granada (Spain); Dep Física and CEFITEC of Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica; Instituto Superior Técnico, Universidade de Lisboa, Lisboa; Portugal.

Institute of Physics of the Czech Academy of Sciences, Prague; Czech Republic.

Czech Technical University in Prague; Czech Republic.

Charles University, Faculty of Mathematics and Physics, Prague; Czech Republic.

Particle Physics Department, Rutherford Appleton Laboratory, Didcot; United Kingdom.

IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette; France.

Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz CA; United States of America.

Departamento de Física, Pontificia Universidad Católica de Chile, Santiago; Universidad Andres Bello, Department of Physics, Santiago; Instituto de Alta Investigación, Universidad de Tarapacá; Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso; Chile.

Department of Physics, University of Washington, Seattle WA; United States of America.

Department of Physics and Astronomy, University of Sheffield, Sheffield; United Kingdom.

Department of Physics, Shinshu University, Nagano; Japan.

Department Physik, Universität Siegen, Siegen; Germany.

Department of Physics, Simon Fraser University, Burnaby BC; Canada.

SLAC National Accelerator Laboratory, Stanford CA; United States of America.

Physics Department, Royal Institute of Technology, Stockholm; Sweden.

Departments of Physics and Astronomy, Stony Brook University, Stony Brook NY; United States of America.

Department of Physics and Astronomy, University of Sussex, Brighton; United Kingdom.

School of Physics, University of Sydney, Sydney; Australia.

Institute of Physics, Academia Sinica, Taipei; Taiwan.

E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi; High Energy Physics Institute, Tbilisi State University, Tbilisi; Georgia.

Department of Physics, Technion, Israel Institute of Technology, Haifa; Israel.

Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv; Israel.

Department of Physics, Aristotle University of Thessaloniki, Thessaloniki; Greece.

International Center for Elementary Particle Physics and Department of Physics, University of Tokyo, Tokyo; Japan.

Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo; Japan.

Department of Physics, Tokyo Institute of Technology, Tokyo; Japan.

Tomsk State University, Tomsk; Russia.

Department of Physics, University of Toronto, Toronto ON; Canada.

TRIUMF, Vancouver BC; Department of Physics and Astronomy, York University, Toronto ON; Canada.

Division of Physics and Tomonaga Center for the History of the Universe, Faculty of Pure and Applied
Sciences, University of Tsukuba, Tsukuba; Japan.

Department of Physics and Astronomy, Tufts University, Medford MA; United States of America.

Department of Physics and Astronomy, University of California Irvine, Irvine CA; United States of America.

Department of Physics and Astronomy, University of Uppsala, Uppsala; Sweden.

Department of Physics, University of Illinois, Urbana IL; United States of America.

Instituto de Física Corpuscular (IFIC), Centro Mixto Universidad de Valencia - CSIC, Valencia; Spain.

Department of Physics, University of British Columbia, Vancouver BC; Canada.

Department of Physics and Astronomy, University of Victoria, Victoria BC; Canada.

Fakultät für Physik und Astronomie, Julius-Maximilians-Universität Würzburg, Würzburg; Germany.

Department of Physics, University of Warwick, Coventry; United Kingdom.

Waseda University, Tokyo; Japan.

Department of Particle Physics, Weizmann Institute of Science, Rehovot; Israel.

Department of Physics, University of Wisconsin, Madison WI; United States of America.

Fakultät für Mathematik und Naturwissenschaften, Fachgruppe Physik, Bergische Universität Wuppertal, Wuppertal; Germany.

Department of Physics, Yale University, New Haven CT; United States of America.

a Also at Borough of Manhattan Community College, City University of New York, New York NY; United States of America.

b Also at Centro Studi e Ricerche Enrico Fermi; Italy.

c Also at CERN, Geneva; Switzerland.

d Also at CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille; France.

e Also at Département de Physique Nucléaire et Corpusculaire, Université de Genève, Genève; Switzerland.

f Also at Departament de Física de la Universitat Autonoma de Barcelona, Barcelona; Spain.

g Also at Department of Financial and Management Engineering, University of the Aegean, Chios; Greece.

h Also at Department of Physics and Astronomy, Michigan State University, East Lansing MI; United States of America.

i Also at Department of Physics and Astronomy, University of Louisville, Louisville, KY; United States of America.

j Also at Department of Physics, Ben Gurion University of the Negev, Beer Sheva; Israel.

k Also at Department of Physics, California State University, East Bay; United States of America.

l Also at Department of Physics, California State University, Fresno; United States of America.

m Also at Department of Physics, California State University, Sacramento; United States of America.

n Also at Department of Physics, King’s College London, London; United Kingdom.

o Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg; Russia.

p Also at Department of Physics, University of Fribourg, Fribourg; Switzerland.

q Also at Dipartimento di Matematica, Informatica e Fisica, Università di Udine, Udine; Italy.

r Also at Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow; Russia.

s Also at Giresun University, Faculty of Engineering, Giresun; Turkey.

t Also at Graduate School of Science, Osaka University, Osaka; Japan.

u Also at Hellenic Open University, Patras; Greece.

v Also at Institucio Catalana de Recerca i Estudis Avancats, ICREA, Barcelona; Spain.

w Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg; Germany.

x Also at Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of Sciences, Sofia; Bulgaria.

y Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest;
Hungary.
z Also at Institute of Particle Physics (IPP), Vancouver; Canada.

aa Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku; Azerbaijan.

ab Also at Instituto de Fisica Teorica, IFT-UAM/CSIC, Madrid; Spain.

ac Also at Joint Institute for Nuclear Research, Dubna; Russia.

ad Also at Moscow Institute of Physics and Technology State University, Dolgoprudny; Russia.

ae Also at National Research Nuclear University MEPhI, Moscow; Russia.

af Also at Physics Department, An-Najah National University, Nablus; Palestine.

ag Also at Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Freiburg; Germany.

ah Also at The City College of New York, New York NY; United States of America.

ai Also at TRIUMF, Vancouver BC; Canada.

aj Also at Universita di Napoli Parthenope, Napoli; Italy.

ak Also at University of Chinese Academy of Sciences (UCAS), Beijing; China.

* Deceased