ON STATISTICAL ESTIMATES OF MEAN FREE PATH MEASUREMENTS

1) Distribution of \(\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \) for constant \(\lambda \)

Let \(x_i \) be the path length of a track before it interacts. If all events are associated with a unique value of \(\lambda \) their distribution will be exponential, i.e. \(e^{-\frac{x_i}{\lambda}} \).

Let us sample \(n \) events out of the universe population. The average is an estimate of \(\lambda \). In fact

\[
\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \Rightarrow \int_0^\infty x e^{-\frac{x}{\lambda}} \frac{d\lambda}{\lambda} = \lambda
\]

Thus \(\bar{x} \) tends asymptotically to \(\lambda \). We want to find out how \(\bar{x} \) fluctuates (for \(n \neq \infty \)) around its asymptotic value.

The probability that the \(n \) events are associated with \(x_i \) - values included between \(x_1, x_1 + dx_1; x_2, x_2 + dx_2 \ldots \ldots x_n, x_n + dx_n \) is

\[
P(\frac{d\lambda_1, \ldots, d\lambda_n}{\lambda}, dx_1, dx_2 \ldots \ldots dx_n) = \hat{A} e^{-\frac{\sum x_i}{\lambda}} dx_1, dx_2 \ldots \ldots dx_n
\]

where \(\hat{A} \) is a normalization coefficient. We can write it also as

\[
P(\frac{d\lambda_1, \ldots, d\lambda_n}{\lambda}, dx_1, \ldots, dx_n) = \hat{A} e^{-\frac{n \bar{x}}{\lambda}} dx_1, \ldots, dx_n
\]

The element of volume can be expressed also in terms of the variation of \(\bar{x} \), i.e. \(d\bar{x} \). We notice that in the \(n \) - dimensional space \(x_1, x_2 \ldots \ldots x_n \), \(\bar{x} = \frac{1}{n} \sum x_i \) for a given \(\bar{x} \), is an hyperplane which cuts the axis at \(x_i = n \bar{x} \). Since all the \(x_i \) can only be positive by definition, a variation of \(\bar{x} \), say \(d\bar{x} \), makes the plane \(n\bar{x} = \sum x_i \) span a volume \(\frac{1}{2} n^2 \bar{x}^{n-1} d\bar{x} \). (See the two - dimensional case in the adjacent figure). Then

PS/4342
\[\int_0^\infty Pd\bar{x} = A \frac{n^2 \overline{\bar{x}}}{2} \int_0^\infty e^{-\frac{n\bar{x}}{\lambda}} \bar{x}^{n-1} d\bar{x} \]

\[= A \frac{n^2 \overline{\bar{x}}}{2} \left(\frac{\lambda}{n} \right)^n \Gamma(n) \]

Hence

\[A \frac{n^2 \overline{\bar{x}}}{2} = \left(\frac{n}{\lambda} \right)^n \frac{1}{\Gamma(n)} \]

and

\[Pd\bar{x} = \left(\frac{n}{\lambda} \right)^n \frac{1}{\Gamma(n)} e^{-\frac{n\bar{x}}{\lambda}} \bar{x}^{n-1} d\bar{x} \]

The average value of \(\bar{x} \) is the, for a large number of samples each of \(n \) events:

\[\langle \bar{x} \rangle = \int_0^\infty \bar{x} P(\bar{x}) d\bar{x} = \frac{n}{(n-1)!} \left(\frac{\bar{x}}{\lambda} \right)^n e^{-\frac{n\bar{x}}{\lambda}} \bar{x} \frac{d\bar{x}}{\lambda} = \frac{\lambda n!}{n(n-1)!} = \lambda \]

c.d.d.

PS/4342
The fluctuation of \bar{x} around its asymptotic value is

$$\sigma_n^2(\bar{x}) = \langle (\bar{x} - \lambda)^2 \rangle = \int_0^\infty (\bar{x} - \lambda)^2 \hat{P}(\bar{x}) d\bar{x} = \lambda^2 \left(\frac{n+1}{n} - 2 + 1 \right) = \frac{\lambda^2}{n}$$

Thus

$$\sigma_n(\bar{x}) = \frac{\lambda}{\sqrt{n}}$$

The limitation of this method lies in the fact that it does not allow one to discuss the case in which our sample contains - in unknown proportions - more than one type of particle, each type being associated with a different mean free path λ_i. It can only determine the consistency of a hypothesis with observations.

2. The maximum likelihood method

The difficulty mentioned above can be overcome using the maximum likelihood method. Let us consider the case of two species only (λ_1 and λ_2). Let x_i be the track length of the i-th event (between its origin and its interaction) and ξ_i its "potential path". The probability of an event to fall between x_i and $x_i + dx_i$ for a given λ is then

$$p_i dx_i = \frac{\lambda^{-1}}{1 - e^{-\xi_i/\lambda}} \frac{dx_i}{\lambda}$$

If the two species are present and q is the (unknown) relative proportion of one of the two (say λ_2), then we shall consider the combined frequency function

$$\bar{p}(\lambda, \lambda_2 | \xi, x_i) = \frac{1-q}{\lambda_2} \frac{e^{-x_i/\lambda}}{1 - e^{-\xi_i/\lambda}} + \frac{q}{\lambda_2} \frac{e^{-x_i/\lambda_2}}{1 - e^{-\xi_i/\lambda_2}}$$

In the case of interest to us, one of the supposed present species is formed by μ-mesons while the predominant one is of π's. We can then assume safety $\lambda_2 = \lambda = \infty$. Then

$$\ell_{\bar{m}} = \frac{1}{\lambda_2} \frac{e^{-x_i/\lambda_2}}{1 - e^{-\xi_i/\lambda_2}} = \frac{1}{\xi_i}$$

PS/4342
Thus, the likelihood function \mathcal{L} reads

$$\mathcal{L} = \prod_{i} \left[(1-q) \frac{e^{-x_i/\lambda}}{\lambda (1-e^{-x_i/\lambda})} + \frac{q}{\xi_i} \right]$$

or

$$\mathcal{L} = \prod_{i} \left[\frac{e^{-x_i/\lambda}}{\lambda (1-e^{-x_i/\lambda})} + q \left(\frac{1}{\xi_i} - \frac{e^{-x_i/\lambda}}{\lambda (1-e^{-x_i/\lambda})} \right) \right]$$

where λ stands for $\lambda_1 = \lambda_2$

We shall assume that λ be known (and, for the moment, constant. Different values of λ will be considered later). The unknown parameter to be estimated is then q. The likelihood equation then reads

$$0 = \frac{2}{\lambda q} \sum_{i} \mathcal{L} = \sum_{i} \frac{1}{\xi_i} - \frac{e^{-x_i/\lambda}}{\lambda (1-e^{-x_i/\lambda})} \frac{e^{-x_i/\lambda}}{\lambda (1-e^{-x_i/\lambda})} + q \left(\frac{1}{\xi_i} - \frac{e^{-x_i/\lambda}}{\lambda (1-e^{-x_i/\lambda})} \right)$$

Putting $a_i = \frac{1}{\xi_i} - \frac{e^{-x_i/\lambda}}{\lambda (1-e^{-x_i/\lambda})}$, $b_i = \frac{e^{-x_i/\lambda}}{\lambda (1-e^{-x_i/\lambda})}$

$$\sum_{i} \frac{a_i}{b_i + q a_i} = 0$$

The solution of this equation gives the likelihood estimate q^* of the parameter q.

The variance of q^* is given by

$$\sqrt{\mathbb{E}\left(-\frac{2}{\lambda q^2} \frac{\partial \mathcal{L}}{\partial q^2}\right)} = \sqrt{\mathbb{E}\left[\frac{\sum a_i^2}{(a_i q + b_i)^2} \right]}$$

Alternatively one can calculate the Bartlett function

$$S = \frac{\sum a_i/(a_i q + b_i)}{\left\{ \sum a_i^2/(a_i q + b_i)^2 \right\}^{1/2}}$$
which has variance 1. Since S is asymptotically normal, the limits of confidence for q, associated with a probability Θ are given by the roots of the equation

$$S = \pm \Theta (P)$$

where $\Theta (P)$ is defined by the equation

$$\sqrt{\frac{2}{\pi}} \int_{\Theta (P)}^{\infty} e^{-\frac{\eta^2}{2}} d\eta = P (|q - q| > \Theta)$$

So far we have assumed a unique value for λ. In practical cases λ is not constant, but varies with the energy of the particle, i.e. along the range. Then the \mathcal{L} function reads

$$\mathcal{L} = \prod_i \sum_j p_j \frac{e^{-\frac{x_j}{\lambda_j}}}{\lambda_j (1 - e^{-\frac{x_j}{\lambda_j}})}$$

which for a continuous distribution of λ, say $f(\lambda)$ becomes

$$\mathcal{L} = \prod \frac{1}{\lambda_i} \int f(\lambda) \frac{e^{-\frac{x_i}{\lambda}}}{\lambda (1 - e^{-\frac{x_i}{\lambda}})} d\lambda$$

In general $f(\lambda)$ is not expressible in a simple analytical form. Thus we shall use the first expression.

In the case of a π/μ mixture, let the proportion of the observed events falling in the j-th interval of energy, corresponding to λ_j, be f_j. Furthermore, let q be the proportion of μ. We normalize the f_j by the equation $\sum f_j = 1$ (That means that $f_j = \frac{\eta_j}{\sum \eta_j}$). Then

$$\mathcal{L} = \prod \left\{ (1 - q) \sum_j f_j \frac{e^{-\frac{x_i}{\lambda_j}}}{\lambda_j (1 - e^{-\frac{x_i}{\lambda_j}})} \right\}$$

FS/4342
and
\[\frac{\partial \ln L}{\partial q} = 0 = \sum_i \frac{A_i}{A_i q + B_i} \]

where
\[A_i = \frac{1}{\xi_i} + \sum_j f_j \frac{e^{-x_i/\lambda_j}}{\lambda_j (1 - e^{-x_i/\lambda_j})} \]
\[B_i = \sum_j f_j \frac{e^{-x_i/\lambda_j}}{\lambda_j (1 - e^{-x_i/\lambda_j})} \]

The Bartlett function reads again
\[S = \left(\frac{\sum_i \frac{A_i^2}{A_i q + B_i}}{\left(\sum_i \frac{A_i^2}{(A_i q + B_i)^2} \right)^{1/2}} \right)^{1/2} \]

C. Franzinetti

/fv

Distribution: (open)

The N.P.A. Scientific Staff

PS/4342