Contents

<table>
<thead>
<tr>
<th>Preface</th>
<th>xvii</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Overview</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Condensed matter physics</td>
<td>1</td>
</tr>
<tr>
<td>1.2 An example - H₂O</td>
<td>3</td>
</tr>
<tr>
<td>1 Gaseous and liquid states</td>
<td>3</td>
</tr>
<tr>
<td>2 The liquid-gas phase transition</td>
<td>4</td>
</tr>
<tr>
<td>3 Spatial correlations in the liquid state</td>
<td>5</td>
</tr>
<tr>
<td>4 Ice - crystallized water</td>
<td>8</td>
</tr>
<tr>
<td>5 Broken symmetry and rigidity</td>
<td>10</td>
</tr>
<tr>
<td>6 Dislocations - topological defects</td>
<td>12</td>
</tr>
<tr>
<td>7 Universality of the water example</td>
<td>13</td>
</tr>
<tr>
<td>8 Fluctuations and spatial dimension</td>
<td>15</td>
</tr>
<tr>
<td>9 Overview of book</td>
<td>16</td>
</tr>
<tr>
<td>1.3 Energies and potentials</td>
<td>17</td>
</tr>
<tr>
<td>1 Energy scales</td>
<td>17</td>
</tr>
<tr>
<td>2 Van der Waals attraction</td>
<td>18</td>
</tr>
<tr>
<td>3 Molecular hydrogen – the Heitler-London approach</td>
<td>20</td>
</tr>
<tr>
<td>4 Hard-sphere repulsion</td>
<td>22</td>
</tr>
<tr>
<td>5 Exchange interaction and magnetism</td>
<td>24</td>
</tr>
<tr>
<td>6 The hydrogen molecule, molecular orbitals, and bands in metals</td>
<td>25</td>
</tr>
<tr>
<td>Bibliography</td>
<td>28</td>
</tr>
<tr>
<td>References</td>
<td>28</td>
</tr>
<tr>
<td>2 Structure and scattering</td>
<td>29</td>
</tr>
<tr>
<td>2.1 Elementary scattering theory – Bragg’s law</td>
<td>29</td>
</tr>
<tr>
<td>2.2 Photons, neutrons, or electrons</td>
<td>33</td>
</tr>
<tr>
<td>2.3 The density operator and its correlation functions</td>
<td>34</td>
</tr>
<tr>
<td>2.4 Liquids and gases</td>
<td>38</td>
</tr>
<tr>
<td>1 Hard-sphere liquids</td>
<td>40</td>
</tr>
<tr>
<td>2.5 Crystalline solids</td>
<td>43</td>
</tr>
<tr>
<td>1 Unit cells and the direct lattice</td>
<td>43</td>
</tr>
<tr>
<td>2 The reciprocal lattice</td>
<td>45</td>
</tr>
</tbody>
</table>
3 Periodic functions 46
4 Bragg scattering 47

2.6 Symmetry and crystal structure 49
1 Two-dimensional Bravais lattices 50
2 Three-dimensional Bravais lattices 53
3 Close packed structures 56
4 Space groups 57

2.7 Liquid crystals 58
1 Isotropic, nematic and cholesteric phases 58
2 Smectics-A and -C 61
3 Hexatic phases 65
4 Discotic phases 68
5 Lyotropic liquid crystals and microemulsions 68

2.8 One- and two-dimensional order in three-dimensional materials 71

2.9 Incommensurate structures 77

2.10 Quasicrystals 82

2.11 Magnetic order 85

2.12 Random isotropic fractals 90

Appendix 2A Fourier transforms 97
1 One dimension 97
2 d dimensions 99
3 Transforms on a lattice 100

Bibliography 101
References 102
Problems 103

3 Thermodynamics and statistical mechanics 108

3.1 Thermodynamics of homogeneous fluids 108
1 The first law of thermodynamics 109
2 The second law of thermodynamics 111
3 The third law of thermodynamics 111
4 Thermodynamic potentials 112
5 Stability criteria 113
6 Homogeneous functions 115
7 Equations of state 116

3.2 Statistical mechanics: phase space and ensembles 117

3.3 The ideal gas 122

3.4 Spatial correlations in classical systems 123

3.5 Ordered systems 127

3.6 Symmetry, order parameters, and models 132
1 Discrete symmetries 135
2 Continuous symmetries 137
Contents

3 Models

Appendix 3A	Functional derivatives	139
Bibliography	140	
References	142	
Problems	142	

4 Mean-field theory

4.1 Bragg-Williams theory	144
4.2 Landau theory	146
4.3 The Ising and n-vector models	151
1 The nonlocal susceptibility and the correlation length	152
2 O_n symmetry	154
3 Some mean-field transitions	156
4.4 The liquid-gas transition	159
1 The critical point and the critical isochore	162
2 The coexistence curve	165
4.5 The first-order nematic-to-isotropic transition	168
4.6 Multicritical points	172
1 Tricritical points	173
2 Metamagnets and FeCl$_2$	175
3 $He^3 - He^4$ mixtures and the Blume-Emery-Griffiths model	179
4 Bicritical and tetracritical points	181
5 Lifshitz points	184
4.7 The liquid-solid transition	188
1 Are all crystals BCC?	189
2 Criterion for freezing	192
3 Improvements of the theory	192
4 Changes in density	194
5 Density functional theory	195
4.8 Variational mean-field theory	198
1 Two inequalities	198
2 The mean-field approximation	200
3 The s-state Potts model	201
4 The O_n classical Heisenberg model	202
5 Debye-Hückel theory	204

Bibliography | 208 |
References | 209 |
Problems | 209 |

5 Field theories, critical phenomena, and the renormalization group

| 5.1 Breakdown of mean-field theory | 213 |
| 5.2 The bosonic linear sigma model | 214 |
1 Mean-field transitions revisited 216

5.2 Construction of a field theory 217
1 Coarse graining 217
2 Lattice field theories and their continuum limit 219
3 Gaussian integrals 221
4 Mean-field theory from functional integrals 223
5 Breakdown of mean-field theory revisited 225

5.3 The self-consistent field approximation 226
1 The n-vector model in the limit n → ∞ 229

5.4 Critical exponents, universality, and scaling 230
1 Exponents and scaling relations 230
2 Scaled equation of state 234
3 Multicritical points 235
4 Amplitude ratios 236
5 Theoretical calculations of critical exponents and amplitude ratios 237

5.5 The Kadanoff construction 237

5.6 The one-dimensional Ising model 242
1 Exact solution 242
2 Decimation and renormalization 245

5.7 The Migdal-Kadanoff procedure 248
1 The Ising model on a hypercubic lattice 248
2 General properties of recursion relations 252
3 The Potts lattice gas and krypton on graphite 253

5.8 Momentum shell renormalization group 256
1 Thinning of degrees of freedom and rescaling 256
2 Correlation functions 260
3 The Gaussian model 261
4 The ϵ-expansion 263
5 n-vector model with cubic anisotropy 267
6 Quadratic anisotropy 269
7 Crossover 270
8 Dangerous irrelevant variables 273
9 The utility of the ϵ-expansion 275

Appendix 5A The Hubbard-Stratonovich transformation 276
Appendix 5B Diagrammatic perturbation theory 277
Bibliography 283
References 283
Problems 283

6 Generalized elasticity 288
6.1 The xy-model 289
1 The elastic free energy 289
2 Boundary conditions and external fields 290
3 The Josephson scaling relation 292
4 Fluctuations 293
5 Long-range order, quasi-long-range order, and disorder 295
6 Resistance of a conducting medium 297
6.2 O_n symmetry and nematic liquid crystals 298
1 n-vector elastic energy 298
2 The Frank free energy of nematic liquid crystals 298
3 Cells with non-uniform n 300
4 The Freedericksz transition 302
5 The twisted nematic display 304
6 Fluctuations and light scattering 306
6.3 Smectic liquid crystals 308
1 The elastic free energy 309
2 Fluctuations 312
3 Nonlinearities 314
4 The nematic-to-smectic-A transition 315
6.4 Elasticity of solids: strain and elastic energy 316
1 The strain tensor 316
2 The elastic free energy 318
3 Isotropic and cubic solids 319
4 Fluctuations 321
5 Mercury chain salts – one-dimensional crystals 322
6 Xenon on graphite – a two-dimensional crystal 324
7 Vacancies and interstitials 325
8 Bond-angle order and rotational and translational elasticity 328
9 Elastic constants from density functional theory 329
6.5 Lagrangian elasticity 330
1 Classical theory of elasticity 330
2 Elasticity of classical harmonic lattices 332
6.6 Elasticity of solids: the stress tensor 334
1 The Lagrangian stress tensor 334
2 Stress-strain relations 337
3 The Eulerian stress tensor 338
6.7 The nonlinear sigma model 341
Bibliography 347
References 347
Problems 347

7 Dynamics: correlation and response 353
7.1 Dynamic correlation and response functions 354
1 Correlation functions 354
8 Hydrodynamics 417
 8.1 Conserved and broken-symmetry variables 417
 8.2 A tutorial example -- rigid rotors on a lattice 419
 1 Description of the model 420
 2 The disordered phase 421
 3 The ordered phase 426
 4 Excitations from the classical ground state 430
 5 The Goldstone theorem 432
 6 Kubo formulae 432
 7 Summary 433
 8.3 Spin systems 434
 1 Spin dynamics 434
 2 Generalized Heisenberg models 435
 3 The planar magnet 436
 4 The isotropic antiferromagnet 438
 5 Isotropic ferromagnets 439
 8.4 Hydrodynamics of simple fluids 440
 1 Conservation laws 441
 2 Thermodynamics with mass motion 443
 3 The entropy production equation 444
 4 Dissipationless hydrodynamics 445
 5 Dissipation 446
 6 The Navier-Stokes equations 448
 7 Hydrodynamic modes 449
 8 Light scattering 452
 9 Two-component fluids 453
 8.5 Liquid crystals, crystalline solids, and superfluid helium 454
 1 Nematic liquid crystals 454
 2 Smectic-A liquid crystals 456
 3 Crystalline solids 459
 4 Superfluid helium 460
 8.6 Stochastic models and dynamic critical phenomena 464
 1 Critical slowing down and the conventional theory 464
 2 Dissipative dynamics 466
 3 Dynamic scaling 469
 4 Poisson bracket terms 472
 5 Models with Poisson brackets 475
 6 Mode-mode coupling 477
 8.7 Nucleation and spinodal decomposition 479
 1 Nucleation with a nonconserved order parameter 480
 2 Symmetric unstable quench with model A dynamics 483
3 Conserved order parameters and spinodal decomposition 484

Bibliography 491
References 491
Problems 492

9 Topological defects 495

9.1 Characterization of topological defects 495
1 Vortex pairs 499
2 Order parameters with more than two components 499
3 Order parameter spaces and homotopy 501

9.2 Examples of topological defects 506
1 Vortices in xy-models 506
2 Dislocations in smectic liquid crystals 507
3 Periodic solids 512
4 Volterra construction 515
5 Hexagonal and close-packed lattices 515
6 Disclinations in crystals 517
7 Strength of crystals 518
8 Crystal growth 522
9 Grain boundaries 522
10 Nematic and hexatic liquid crystals 524

9.3 Energies of vortices and dislocations 526
1 Simple calculation of xy-vortex energies 526
2 Analogy with magnetism 530
3 Energies of dislocations in crystals 531
4 Dislocations in smectic liquid crystals 536

9.4 Vortex unbinding and the Kosterlitz-Thouless transition 542
1 Vortices and the spin-wave stiffness 542
2 Vortex unbinding in two dimensions – the Kosterlitz-Thouless transition 544
3 Superfluid helium films 551

9.5 Dislocation mediated melting 555
1 Effects of a substrate 558
2 Experiments and numerical simulation 559

9.6 The twist-grain-boundary phase 561
1 Structure of the TGB phase 561
2 The thermodynamic critical field 564
3 The lower critical field 565
4 The upper critical field 566
5 X-ray scattering 568
6 Analogy with superconductivity 571

Appendix 9A Notes on the Kosterlitz-Thouless transition 573
1 Integration of the KT recursion relations 573
2 Longitudinal and transverse response 575
3 The spin correlation function 577

Appendix 9B Duality and the Villain model 578
1 Potts models 579
2 The xy-, Villain, and lattice Coulomb-gas models 582

Bibliography 584
References 584
Problems 585

10 Walls, kinks and solitons 590

10.1 Some simple examples 591

10.2 Domain walls in mean-field theory 595
1 The ϕ^4 kink 597
2 The sine-Gordon soliton 599
3 Dynamics 599

10.3 The Frenkel-Kontorowa model 601
1 Introduction 601
2 Discommensurations 602
3 Devil's staircases and the FK phase diagram 603
4 The continuum approximation 605
5 Nature of solutions 608
6 The minimum energy solution 610
7 Repulsive interaction between discommensurations 613
8 X-ray diffraction 613
9 Compressional elastic constants 614
10 Phasons 615
11 Pinned phasons 617
12 Extension to two dimensions 618

10.4 Fluctuating walls 620
1 Differential geometry and the total surface area 620
2 Curvature 623
3 Energy of a surface 625
4 Fluctuations in the harmonic approximation 626
5 Nonlinearities and renormalization in fluid membranes 629
6 Polymerized membranes 630

10.5 Arrays of fluctuating walls 635
1 Fluctuating walls and steric entropy 635
2 Honeycomb lattice of walls 638
3 Elasticity of sterically stabilized phases 638
4 Dislocations and the CI transition 640

10.6 Roughening and faceting 643
1 The solid-on-solid and discrete Gaussian models 643