Wolfgang Braun

Applied RHEED

Reflection High-Energy Electron Diffraction During Crystal Growth

With 150 Figures and 7 Color Plates
Contents

1. MBE-Grown Semiconductor Interfaces .. 1
 1.1 Molecular-Beam Epitaxy ... 1
 1.2 Interface Formation ... 3
 1.3 GaAs/AlAs Surfaces .. 7

2. Reflection High-Energy Electron Diffraction (RHEED) 13
 2.1 Geometry and Experimental Conditions 13
 2.2 Instrumentation and Miscellaneous RHEED Techniques 17
 2.3 Theoretical Models ... 19
 2.3.1 Kinematical Scattering 20
 2.3.2 Dynamical Scattering .. 25

3. RHEED Oscillations ... 27
 3.1 Current Experimental Status 27
 3.2 Theoretical Models ... 35
 3.2.1 Birth–Death Models .. 35
 3.2.2 Kinematical Model .. 38
 3.2.3 Edge-Scattering Model 38
 3.2.4 Dynamical Approaches 39
 3.2.5 Top-Layer Interference Model 39

4. Semikinematical Simulations of RHEED Patterns 43
 4.1 Different Models for the Surface Reconstruction
 of GaAs (113)A ... 44
 4.2 Misoriented GaAs (113)A .. 51
 4.3 (001) GaAs (2×4)/c(2×8) 54
 4.3.1 Depth Modulation .. 56
 4.3.2 Shadowing and Average Layer Potential 58
 4.3.3 Relaxation, Doyle–Turner
 and Debye–Waller Corrections 61
 4.3.4 The [110] Azimuth .. 63
 4.4 Domains .. 64
5. **Kikuchi Lines** .. 75
 5.1 A Simple Scheme for the Geometrical Construction
 of Kikuchi Patterns .. 75
 5.1.1 Three-Dimensional Lines 75
 5.1.2 Extension to Fewer Than Three Dimensions 79
 5.2 Determination of Average Crystal Potential
 and Misorientation ... 82
 5.3 Where do Kikuchi Lines Originate? 87

6. **RHEED with Rotating Substrates** 91
 6.1 Gated Detection .. 92
 6.2 Azimuthal Scans .. 93
 6.3 RHEED Oscillations .. 99

7. **Reconstruction-Induced Phase Shifts**
 of **RHEED Oscillations** 109
 7.1 Phase Shifts at GaAs/AlAs Heterointerfaces 110
 7.1.1 Variation of As$_4$ Pressure 111
 7.1.2 Variation of Substrate Temperature 112
 7.1.3 Variation of the Growth Rate 117
 7.1.4 Variation of Diffraction Conditions 118
 7.2 Experimental Results 118
 7.2.1 Sampling Depth of RHEED 119
 7.2.2 Phase Shifts and Surface Reconstructions 121
 7.2.3 Phase Shift Variation Along a Streak 127
 7.2.4 Decoupling of Phase on Different Streaks 129

8. **Energy Loss Spectroscopy During Growth** 133
 8.1 Electron Loss Spectroscopy on Static Surfaces 136
 8.2 ELS-RHEED Intensity Oscillations 142

9. **Phase Shifts: Models** .. 145
 9.1 Growth-Induced Phase Shifts 145
 9.2 Diffraction-Induced Phase Shifts:
 The Top-Layer Interference Model 148
 9.2.1 A Basic Model 148
 9.2.2 Comparison With Experiments 154
 9.2.3 Phase Shifts at Interfaces 161

10. **Applications of Reconstruction-Induced Phase Shifts** 165
 10.1 Ga Segregation at AlAs/GaAs Interfaces 165
 10.1.1 (001) Interfaces 165
 10.1.2 (113)A Interfaces 174
 10.2 Modifying the Surface Reconstruction: Tin Doping 179
 10.3 Modifying the Surface Morphology: Carbon Doping 182
10.4 Silicon Doping .. 185
 10.4.1 Dependence of the Phase Shift on Si Concentration ... 185
 10.4.2 Si-Induced Kinks ... 188
 10.4.3 Si Segregation ... 189
 10.4.4 GaAs/AlAs (001) Revisited 194

11. Closing Remarks .. 197

References .. 201

Index .. 211

Color Plates .. 217