SUPERSYMMETRIC STRINGS AND COLOUR CONFINEMENT

M. Ademollo
Istituto di Fisica Teorica dell'Università, Firenze
Istituto Nazionale di Fisica Nucleare, Sezione di Firenze

L. Brink
Institute for Theoretical Physics - Fack, Gøteborg

A. D'Adda, R. D'Auria, E. Napolitano and S. Sciuco
Istituto di Fisica Teorica dell'Università, Torino
Istituto Nazionale di Fisica Nucleare, Sezione di Torino

E. Del Giudice
Niels Bohr Institute, Copenhagen

P. Di Vecchia
NORDITA, Copenhagen

S. Ferrara
CERN - Geneva

F. Gliozzi
Laboratoire de Physique Théorique, Ecole Normale Supérieure
Paris

R. Musto and R. Pettorino
Istituto di Fisica Teorica dell'Università, Napoli
Istituto Nazionale di Fisica Nucleare, Sezione di Napoli

ABSTRACT

The (infinite-dimensional) supersymmetry algebra in 1+1 space-time dimension is extended in order to incorporate, in a non-trivial way, an internal symmetry. It turns out that this requirement implies that the internal symmetry is realized as a local gauge symmetry. Moreover, it is possible to construct string-like models with this underlying symmetry, where colour confinement is exactly realized as a consequence of the gauge constraints.

Ref.TH.2097-CERN
17 November 1975
The interest in generalizing the two-dimensional supersymmetry algebra1 to include an internal symmetry2 is twofold.

Firstly, it is a new example of a graded Lie algebra, quite different from its four-dimensional counterpart, because of the exceptional properties of the conformal group in two dimensions.

Secondly, its properties can be useful to construct and to exploit features of supersymmetric invariant field theories in two dimensions. In this respect, we have in mind possible generalizations of the supersymmetric string model (Neveu-Schwarz-Ramond) to the case where an internal quantum number (charge or isotopic-spin like) is distributed along the string. In at least two examples (internal symmetry U(1) and SU(2)) we will show that one can indeed construct new supersymmetric string models where all physical excitations of the string have the property of being colour singlets because of the gauge conditions. In the present framework this gives an exact algebraic formulation of colour confinement. The explicit Lagrangian formulation of the string with the Abelian [U(1)] colour symmetry will be given in this paper.

We start with the extension of the supersymmetry algebra in 1 + 1 space-time dimension, which contains the infinite dimensional conformal algebra (the trivial c-number part has not been written for simplicity)

\[[L_n, L_m] = (n - m) L_{n+m} \quad (1) \]

and the supergauge charges with commutation and anticommutation relations

\[
\{G_m, G_m\} = 2L_{n+m} \quad \quad (2)
\]

\[
\begin{cases}
[G_n, L_m] = (n - \frac{m}{2}) G_{n+m} \\
\end{cases}
\]

to the case where the supergauge charges carry an internal symmetry index σ^i_n.

The construction of the enlarged supersymmetry algebra is very simple. One can simply start from the composition law in the parameter space $(\sigma, \tau, \theta^i_\alpha)$ where σ, τ are space-time labels and θ^i_α are N Majorana spinors which are odd elements of a Grassmann algebra, i.e.

\[\theta^i_\alpha \theta^j_\beta = - \theta^j_\beta \theta^i_\alpha \quad (3) \]

which implies

\[\theta^i_\alpha \theta^i_\alpha = 0 \quad \forall \alpha, i \quad (4) \]

Because of the exceptional properties of conformal transformations in two dimensions, it is better to use light-cone parameters...
\[\xi' = \xi + \tau \quad \Theta^i' = \frac{i}{\alpha} (1 + \gamma^5) \alpha_\mu \Theta^i_\mu \]
\[\zeta = \zeta - \tau \quad \chi^i = \frac{i}{\alpha} (1 - \gamma^5) \alpha_\mu \Theta^i_\mu \]

and to confine ourselves to the \(\xi, \Theta^i \) part.

Under a restricted supersymmetry transformation \(\xi, \Theta^i \) undergo the following transformations:

\[\delta \xi = i \sum_i \alpha^i \Theta^i \]
\[\delta \Theta^i = \alpha^i \]

while under a conformal transformation of parameter \(u(\xi) \):

\[\delta \xi = u \quad \delta \Theta^i = \frac{u}{2} \Theta^i \]

The crucial point is that the most general transformation of the algebra can be generated combining the transformations (6) and (7).

The general formula one gets is the following:

\[\delta \xi = i (2m - m) \alpha_{i_1 \ldots i_m} (\xi) \Theta^{i_1} \cdots \Theta^{i_m} \]
\[\delta \Theta^i = m \alpha_{i_1 \ldots i_m} (\xi) \Theta^{i_1} \cdots \Theta^{i_m} + i \alpha_{i_1 \ldots i_m} (\xi) \Theta^{i_1} \cdots \Theta^{i_m} \Theta^i \]

where the \(\alpha_{i_1 \ldots i_m} \)'s are commuting (anticommuting) parameters for \(n \) even (odd) and are completely antisymmetric in the indices, so that for a given \(n \) they have \(\binom{n}{m} \) components. The total number of independent transformations is therefore

\[\sum_{n=0}^{N} \binom{N}{n} = 2^N \]

The algebra induced from Eqs. (8) contains as a particular case \((N = 0,1) \) the Virasoro algebra given by Eq. (1) and the Neveu-Schwarz algebra given by Eqs. (1) and (2). For \(N = 2 \), i.e. with the \(\Theta^i \)'s transforming as an \(O(2) \) doublet, one gets the first graded Lie algebra which generalizes (1) and (2) to the case of an Abelian internal symmetry. The independent transformations obtained in this case from the general formula (8) are

conformal transformations \[\delta \xi = u \quad \delta \Theta^i = \frac{u}{2} \Theta^i \] (9a)

supergauge transformations \[\delta \xi = i \alpha^i \Theta^i \quad \delta \Theta^i = \alpha^i + i \alpha^j \delta^i \Theta^j \] (9b)
local O(2) transformations

\[\delta \xi = 0 \quad \delta \Theta^i = T \epsilon^{ij} \Theta^j \]

(9c)

where \(u(\xi) \), \(T(\xi) \) and \(\alpha(\xi) \) are arbitrary functions and \(\alpha(\xi) \) is an anticommuting quantity \([\alpha^2(\xi) = 0] \).

The abstract graded Lie algebra is (up to c-numbers which will be discussed in full detail elsewhere)

\[
\begin{align*}
[L_n, L_m] &= (n-m) L_{n+m} \\
[L_n, G^i_m] &= (\frac{n}{2} - m) G^i_{n+m} \\
\{ \ G^i_m, G^j_m \} &= 2 \delta^{ij} L_{n+m} + i \epsilon^{ij} (n-m) T_{n+m} \\
[T_m, T_m] &= 0 \\
[T_n, G^i_m] &= i \epsilon^{ij} G^j_{n+m} \\
[T_n, L_m] &= n T_{n+m}
\end{align*}
\]

(10)

where the subscripts \(n, m \) run over the integers for the bosonic operators \(L_n, T_n \) and over the half integers for the supergauge operators \(G^i_n \).

The interesting feature which emerges from this algebra is that (contrary to the four-dimensional case) the internal symmetry is realised as a local gauge symmetry in the string-space as is already evident from the general composition law given by Eqs. (8). The global transformation corresponds to the \(n = 0 \) mode \(T_0 \) \((\xi\text{-independent transformation})\), which is nothing but the generator of the O(2) group. Note that the global group generator \(T_0 \) closes in a finite subalgebra (with \(L_0, L_1, L_{-1} \) and the supergauges \(G^i_0, G^i_{-1} \)) of the infinite system given by Eqs. (10). The supergauge charges \(G^i_n \) are O(2) vectors with respect to both global and local O(2) transformations. This will no longer be the case in the non-Abelian situation with O(3) as an internal symmetry. In fact, for \(N = 3 \) the independent transformations derived from Eqs. (8) are

\[
\begin{align*}
\text{conformal transformations} & \quad \delta \xi = u \quad \delta \Theta^i = \frac{i}{2} \Theta^i \\
\text{supergauge transformations} & \quad \delta \xi = i \alpha^i \Theta^i \quad \delta \Theta^i = \alpha^i + i \alpha^j \Theta^j \Theta^i \\
\text{(triplet)}
\end{align*}
\]

(11a)

(11b)
supergauge transformations $\delta \mathcal{F} = \frac{1}{3!} \alpha \varepsilon^{ijk} \theta_i \theta_j \theta_k, \delta \theta^i = \frac{i}{2} \varepsilon^{ijk} \theta_j \theta_k \theta^i$ (11c)

local $O(3)$ transformations $\delta \mathcal{F} = 0, \delta \theta^i = T^{ij} \theta^j + \frac{i}{2} \hat{T}^{ij} \theta^j \theta^i$ (11d)

The corresponding abstract graded Lie algebra is

\[
\begin{align*}
[L_n, L_m] &= (n-m) L_{n+m} \quad [L_n, G^i_m] = (\frac{n}{2} - m) G^i_{n+m} \\
[L_n, \Gamma^i] &= (-\frac{n}{2} - m) \Gamma^i_{n+m} \quad [\Gamma^i, T^j_m] = 0 \\
\{ \Gamma^i_n, \Gamma^j_m \} &= 0 \quad \{ \Gamma^i_n, G^j_m \} = T^i_{n+m} \\
[T^i_n, G^j_m] &= i \varepsilon^{ijk} G^k_{n+m} + n \Gamma^i_n \delta^{ij} \quad [T^i_n, T^j_m] = i \varepsilon^{ijk} T^k_{n+m} \\
\{ G^i_m, G^j_n \} &= 2 \delta^{ij} L_{n+m} + i \varepsilon^{ijk} (n-m) T^k_{n+m} \\
\{ T^i_n, L_m \} &= n T^i_{n+m}
\end{align*}
\]

which show that a fourth supergauge charge Γ^i_n is generated from a local $O(3)$ rotation of the supergauge G^i_n. Γ^i_n is a local singlet, while the G^i_n's are only global triplets.

For a general $O(N)$ symmetry the algebra (12) generalizes as follows

\[
\begin{align*}
[L_n^{i_1 \cdots i_R}, G^j_m] &= i^{-RS} \left(m(2-S) - n(2-R) \right) G^j_{n+m} \\
&\quad - i \sum_{R+1}^{S} \sum_{h+k=S}^{R} (-1)^{h+k} S^{i_1 \cdots i_R j_1 \cdots j_S} \Gamma^i_{n+m} \quad \text{(13)}
\end{align*}
\]

where one has a commutator (anticommutator) if RS is even (odd). G^i_n is a completely antisymmetric tensor of the global $O(N)$ group and it is a bosonic (fermionic) quantity if R is even (odd). The hat on the indices i_h and j_n means that these indices are omitted.

The algebra (13) contains just 2^N independent (local) generators of which $2^N/2$ are bosons and $2^N/2$ are fermions. This implies that, in addition to the $N(N + 1)/2 + 1$ charges that one would expect from the conformal, supergauge and internal symmetry generators, there are $2^N - 1 - N(N + 1)/2$ new charges.

An interesting new structure can be extracted from the algebra (13) in the case where $N = 4$, due to the peculiar property $O(4) = O(3) \otimes O(3)$. For $N = 4$ the algebra (13) contains 16 generators:
\[L_n, G_n^i, T_n^{ij}, \quad \Gamma_m^{ijk} = \varepsilon^{ijk\ell} \Gamma_n^\ell, \quad \Delta_m^{ijk\ell} = \varepsilon^{ijk\ell} \Delta_n \]

respectively the conformal, supergauge and internal symmetry generators plus the additional new charges. If we make now the following combinations:

\[\mathcal{L}_n = L_n + \frac{n^2}{2} \Delta_n, \quad \mathcal{G}_m^i = G_m^i + i m \mathcal{T}_m^i, \quad \mathcal{T}_m^{ij} = \frac{1}{2} \left(T_n^{ij} + \frac{1}{2} \varepsilon^{ijk\ell} T_n^{k\ell} \right) \]

these new charges close under the following algebra

\[[\mathcal{L}_m, \mathcal{L}_m] = (m - n) \mathcal{L}_{n+m} \]

\[[\mathcal{G}_m^i, \mathcal{G}_m^j] = 2i (n - m) \mathcal{T}_{n+m}^{ij} + 2 \delta^{ij} \mathcal{L}_{n+m} \]

\[[\mathcal{L}_m, \mathcal{G}_m^i] = (m - n) \mathcal{G}_{n+m}^i \]

\[[\mathcal{L}_m, \mathcal{T}_m^{ij}] = -m \mathcal{T}_{n+m}^{ij} \]

\[[\mathcal{G}_m^i, \mathcal{T}_m^{jk}] = \frac{i}{2} \left(\delta^{ik} \mathcal{T}_{n+m}^{jl} - \delta^{jk} \mathcal{T}_{n+m}^{il} \right) - \frac{i}{2} \varepsilon^{ijk\ell} \mathcal{G}_{n+m}^\ell \]

\[[\mathcal{T}_m^{ij}, \mathcal{T}_m^{kh}] = i \left(\delta^{ik} \mathcal{T}_{n+m}^{jh} + \delta^{jh} \mathcal{T}_{n+m}^{ik} - \delta^{ih} \mathcal{T}_{n+m}^{jk} - \delta^{jk} \mathcal{T}_{n+m}^{ih} \right) \]

where the last commutator is just a realization of one of the $O(3)$ symmetries of $O(4)$. In particular, we observe that the two complex doublets $(G_3 \pm i G_4, G_1 \pm i G_2)$ just transform according to the spinor representation (and its complex conjugate) of $SU(2)$. The interesting fact is that no additional charges, besides conformal, supergauge, and internal symmetry, are present in this algebra and that it can be easily realized in terms of canonical fields, leading to the possibility of a new dual model with a non-Abelian $SU(2)$ colour symmetry\(^*\). (We call the local internal symmetry a colour symmetry because, as we shall see in detail for the $U(1)$ case, the gauge conditions imply that the physical states are singlet with respect to the local gauge group.) It is remarkable that, besides the local $O(3)$ algebra contained in Eqs. (14), one can build, in terms of the same canonical fields, another $O(3)$ algebra. Even if these charges are not gauge operators they are a symmetry of the model, because their commutators with the gauges is a combination of the gauges themselves, so that the physical states must belong to multiplets of this "flavour" global $O(3)$ symmetry. A detailed analysis of this model will be given in a forthcoming publication.

Let us now consider in more detail the $O(2)$ case (Abelian colour symmetry). We will show that, as in the Neveu-Schwarz model, one can construct a Lagrangian which is invariant under the algebra given by Eqs. (10) and which gives rise to a new dual model.

\[\text{*} \] We remark that the Fock space representations of the $U(1)$ and $SU(2)$ strings are respectively obtained by replacing the (real) bosonic and fermionic oscillators of the Neveu-Schwarz model with complex and quaternionic oscillators.
The most general superfield 1) one can write is 2)

\[X(\sigma, \tau, \theta^i) = \phi + i \theta^i \phi' + i \bar{\theta}^i \bar{\phi}' F^{ij} + i \frac{1}{2} \varepsilon^{ij} \bar{\theta}^i \gamma^5 \theta^j \mathcal{D} \]
\[+ i \frac{1}{2} \varepsilon^{ij} \bar{\theta}^i \gamma^5 \theta^j \mathcal{D}_j \]

This field can be reduced by imposing on it the supersymmetric condition

\[\left(\bar{\mathcal{D}}^i \mathcal{D}^j - \frac{1}{2} \bar{\mathcal{D}}^h \mathcal{D}_h \delta^{ij} \right) X = 0 \]
(15)

\[D^i \] being the covariant derivative 2). The reduced superfield becomes

\[X = \left(1 - \frac{1}{8} (\bar{\theta}^i \theta^i)^2 \right) \phi + i \bar{\theta}^i \left(1 + \frac{1}{2} \bar{\theta}^i \theta^i \mathcal{D} \right) \phi' + \]
\[+ i \frac{1}{2} \bar{\theta}^i \gamma^5 \mathcal{D} F + i \frac{1}{2} \varepsilon^{ij} \bar{\theta}^i \gamma^5 (\mathcal{D} - \mathcal{D}^j) \theta^j \]
(17)

The invariant action is

\[S = \int d\sigma d\tau d^4 \theta X^2(\sigma, \tau, \theta^i) = \]
\[= \int d\sigma d\tau \left[\frac{i}{2} \Phi \partial \Phi - \frac{i}{2} \gamma^\mu \partial_{\mu} \phi - \frac{i}{2} \bar{\psi} \gamma^5 \psi' + \frac{1}{2} \left(F^2 + D^2 \right) \right] \]
(18)

which gives the following equations of motion

\[\Box \phi = 0 \quad \Box \phi = 0 \quad \partial \psi' = 0 \quad F = D = 0 \]
(19)

Together with the boundary conditions

\[\left(D^1_1 - D^2_2 \right) X = \left(D^1_1 + D^2_2 \right) X = 0 \quad \text{at} \ 0 = \pi \quad \text{and} \ \theta^1 - \theta^1 = \theta^2 - \theta^2 = 0 \]
(20)

\[\left(D^1_1 + D^2_1 \right) X = \left(D^2_1 - D^2_2 \right) X = 0 \quad \text{at} \ \sigma = \pi \quad \text{and} \ \theta^1 - \theta^1 = \theta^2 + \theta^2 = 0 \]

which are due to the fact that the \(\sigma \) integration is in the finite region \(0, \pi \).

For simplicity, we limit our considerations to the meson sector of the model.

The invariance of the action under conformal, supergauge, and local \(O(2) \) transformations implies via the Noether theorem the existence of a conserved supercurrent 4), which in our case is given by

\[\mathcal{V}^\mu(\sigma, \theta^i) = \varepsilon^{ij} \bar{\theta}^j X \gamma^5 \partial_\mu X \]
(21)

Since we started from the linearized form of the superstring Lagrangian we have lost the constraint equations which follow from the requirement of invariance

*) \(X \) stands for a Lorentz vector field \(X \) in a D-dimensional space-time and a Lorentz index \(\mu \) has been omitted. When \(X \) appears in a bilinear form, summation over this index is understood.
under general reparametrization of the superstring coordinates \((\sigma, \tau, \theta^i_\alpha)\). Therefore, in analogy with the case of the conventional string (as well as in the Neveu-Schwarz string) in order to impose general reparametrization invariance we require at the classical level the vanishing of the supercurrent

\[\nabla^M (\tilde{\xi}^M, \Theta^i_\alpha) = 0 \]

(22)

Constructing from the supercurrent the corresponding charges one recognizes that the coefficients of the \(8\) expansion of the "supercharge" are just given by the operators \(T_n, \xi^i_n, \) and \(L_n\), which satisfy the algebra (10).

As a consequence of Eq. (22) in the quantum theory one finds that the physical states are annihilated not only by the conformal and supergauge charges (as already happens in the Neveu-Schwarz model) but also by the internal symmetry generator so one gets the colour confinement condition

\[T_n | \Psi_{\text{phys}} \rangle = 0 \quad n \geq 0 \]

(23)

i.e. that the physical states must be singlets with respect to the local (colour) \(O(2)\) group.

At this stage one is very tempted to consider \(\psi = \psi_1 + i\psi_2\) as a quark field carrying, in this oversimplified case, an Abelian colour quantum number \([U(1)\) charge colour group]. The detailed structure of this model and the explicit construction of the dual amplitudes, as well as the supersymmetric string formulation of the conventional Neveu-Schwarz model, will be the subject of a forthcoming publication.

As a final point, we would like to point out the difficulties and perhaps the interesting features which emerge in the extension of the present model to higher non-Abelian groups.

In order to understand this more general case, it is better to come back to the original Neveu-Schwarz model whose linearized Lagrangian is

\[\mathcal{L} (\sigma, \tau, \Theta^i_\alpha) = \overline{D} X D X \]

(24)

while for the \(O(2)\) symmetric string it is

\[\mathcal{L} (\sigma, \tau, \Theta^i_\alpha) = \nabla^2 \]

(25)

The reason for this is just due to conformal invariance. In fact, one should observe that the invariant measure is in general
\[\int \mathcal{D}^2 \sigma \, \mathcal{D}^2 \Theta \]

(26)

for an O(N) symmetry, so it carries a dimension \(d_\sigma = N - 2 \). Therefore the Lagrangian density must have a dimension \(d_\mathcal{L} = 2 - N \), in order to have a conformal invariant action. For \(N \geq 3 \) this last condition generally implies that subcanonical fields must be present in the superfield expansion \(^8\). These subcanonical fields are just the sources of the new charges which are present in the algebra (12). The presence of these subcanonical fields greatly complicates the quantization of a supersymmetric string with a non-Abelian colour symmetry; nevertheless we think that these difficulties have some analogies with the case of supersymmetric QED in two and four dimensions \(^9\). We hope to come back to these problems in a future publication.

Acknowledgements

We thank E. Corrigan, D. Fairlie, A. Kraemmer, H. Nielsen and D. Olive for interesting discussions. Three of us (A. D'Adda, R. D'Auria and S. Sciuto) thank NORDITA for the hospitality extended to them during a period when part of this work was done.

\(^8\) An important exception is however the SU(2) case previously discussed, where its realization does not need any subcanonical field.
REFERENCES

2) A. Salam and J. Strathdee, Nuclear Phys. B80, 499 (1974).

3) In the case of the Neveu–Schwarz model an analogous formalism has been used
 by B. Zumino, Renormalization and invariance in quantum field theory

