Toward
Observationally Determining
the Nature of the Missing Energy
Wayne Hu
Why Go Beyond the CDM Model & its Variants

• **Precision** CMB, LSS, High–z (e.g. SNIa) tests may show we do not live in the 13D CDM space

• **Parameter estimation** and likelihood analysis is only as good as the **model space** considered

• Even if we **do live in CDM space** one would like to observationally prove the **dark matter is CDM** and the **missing energy is \(\Lambda \) or scalar field quintessence**

• Need to **parameterize the possibilities** with variables that go continuously from CDM space to more exotic possibilities → **generalized dark matter (GDM)**

• Determine the **clustering properties** of dark matter → **weighing neutrinos**, sound speed of dark matter

• Detect **anisotropies** in the **neutrino background radiation**
The Taxonomy of Structure Formation

S = Scalar T = Tensor V = Vector

Hu & Eisenstein (1998)
Einstein Equations
\[G_{\mu\nu} = 8\pi G T_{\mu\nu} \]

Homogen. & Isotropic Background
+ Linear Metric Perturbations

Scalar
Vector
Tensor
Scalar Perturbations
Stress + Smooth → Curvature

Stress Free
$S, S_A \ll \zeta_C$

Anisotropic Stress
$S_A \gtrsim \zeta_C, S \ll \zeta_C$

General Stress
$S_A \gtrsim \zeta_C, S_A \gtrsim \zeta_C$

Clustered
$\zeta_C = \text{const.}$
$\Phi = \text{backgrd. integral}$

General
$\zeta_C = \Phi = \text{stressed integral}$

Clustered
$\zeta_C = \Phi = \text{backgrd. ODE}$

General
$\zeta_C = \Phi = \text{stressed ODE}$

Clustered
$\zeta_C = \Phi = \text{stress integral}$

General
$\zeta_C = \Phi = \text{implicit integral}$

2 Component
w_1, w_2

CDM
ΛCDM
MDM
QCDM
ϕCDM
GDM

2–3 Component
$w_C = w_1$
$w_S = w_1, w_2$

CDM
string-DM
MDM
QCDM
ΛCDM
QMDM
ΛMDM
ϕCDM
OCDM
QϕMDM
OMDM
GDM

Superhorizon
$k\eta \ll 1$

Constant Entropy
PIB
Axion

All Type I (Adiabatic) Models

Non-Adiabatic Stress
External Source
Defects

Adiabatic Stress

WKB
$k_s \gg 1$

GDM

Two Component
$w_1 - w_2, k/k_{eq} \gg 1$

All Adiabatic Models

General Stress

WKB Integral
$k\eta \gg 1$

GDM

Two Component
$w_1 - w_2, k/k_{eq} \gg 1$

PIB

Hu & Eisenstein (1998)
Vector Perturbations

- **Stress Free**
 \[\pi^{(\pm 1)} \ll \nu^{(\pm 1)} - B^{(\pm 1)} \]
 - Pure Decay
 - Decay of vorticity from arbitrary initial conditions

- **Anisotropic Stress**
 \[\pi^{(\pm 1)} \gtrsim \nu^{(\pm 1)} - B^{(\pm 1)} \]
 - Stress Integral
 - Defects

Tensor Perturbations

- **Stress Free**
 \[\pi^{(\pm 2)} \ll H_T^{(\pm 2)} \]
 - Free Gravity Waves
 - tCDM

- **Anisotropic Stress**
 \[\pi^{(\pm 1)} \gtrsim H_T^{(\pm 2)} \]
 - Stress Integral
 - Defects
Generalized Dark Matter

• Arbitrary Stress–Energy Tensor $T_{\mu\nu}$
 16 Components

• Local Lorentz Invariance \rightarrow Symmetric $T_{\mu\nu}$
 10 Components

• Energy–Momentum Conservation
 4 Constraints
 6 Components (Pressure, 5 Anisotropic Stresses)

• Linear Perturbations
 1 Pressure (Isotropic Stress)
 1 Scalar Anisotropic Stress
 2 Vector Anisotropic Stresses (2 Vorticity)
 2 Tensor Anisotropic Stresses (2 GW Polarizations)

• Homogeneity & Isotropy
 1 Background Pressure
 1 Pressure Fluctuation
 1 Scalar Anisotropic Stress Fluctuation

• Gauge Invariance \rightarrow Parameterized Stresses
 1 Equation of State $w=p/\rho$
 1 Sound Speed $c_{\text{eff}}^2=\delta p/\delta \rho=$Adiab.+Non-Adiab.
 1 Anisotropic Stress c_{vis}^2 (viscosity)

Hu, astroph–9701234
Clustering Regime

- Energy–Momentum Conservation + Causality
 \(\rightarrow\) Potential \(\Phi(w)\) \([w=\text{background eqn. of state}]\)

- Weak Decay as \(w\) decreases
 \(\rightarrow\) Minimal CMB anisotropies

\[
\frac{\Phi}{\Phi_0} = \frac{1}{1 + y/2w_2 + y^2/12w_2^2}
\]

Radiation Domination

Hu & Eisenstein (1998)

\(w_2 = -1\)

\(w_2 = -1/6\)

Matter Domination

GDM Domination
“Smooth” Regime

• Stress stabilization for \(k^{-1} < s = \int c_{\text{eff}} \, d\eta \)
 \([c_{\text{eff}}= \text{effective sound speed}]\)

• Maximize CMB anisotropies \(c_{\text{eff}} \to 1 \) [scalar fields]

• Maximize LSS Features \(c_{\text{eff}} \to 0 \) [HDM]

Radiation Domination

\[w_2 = -1 \]

\[w_2 = -1/6 \]

\(\Phi/\Phi_0 \)

\(y/(1+y) \)

Boltzmann

Analytic

Hu & Eisenstein (1998)

Matter Domination

GDM Domination
Is the Missing Energy a Scalar Field?

- **Scalar Fields** have maximal sound speed
 \[c_{\text{eff}} = 1, \text{ speed of light} \]

- **CMB+LSS** → Lower limit on \(c_{\text{eff}} > 0.6 \) at \(w_g = -1/6 \)

 [2.7\(\sigma \): MAP+SDSS; 7.7\(\sigma \): Planck+SDSS]
 [in 10d parameter space, including bias, tensors]

- Constraints weaken as \(w_g \) decreases

Large Scale Structure

\[
P(k) = \begin{cases}
10^4 & \text{if } c_{\text{eff}}^2 = 0 \\
10^3 & \text{if } c_{\text{eff}}^2 = 1/6 \\
10^2 & \text{if 1 scalar fields}
\end{cases}
\]

\[
k (h \text{ Mpc}^{-1})
\]

CMB Anisotropies

\[
\left(\frac{\Delta T}{T} \right)^2 \times 10^{-10}
\]

\[
l
\]

\[
c_{\text{eff}}^2 = 0 \quad w_g = -1/6
\]

\[
1/6
\]

1 scalar fields
Hot Dark Matter as GDM

- Hot Dark Matter is a component of matter going nonrelativistic near last scattering (eV range)
- Possesses a time–dependent equation of state, sound speed, and viscosity
- Well–modeled by GDM of $c_{\text{eff}}^2 = c_{\text{vis}}^2 = w_g$ at low computational cost

![CMB Anisotropies](image1)

![Power Spectrum](image2)
Weighing Neutrinos

Hu, Eisenstein, & Tegmark (1998)
Eisenstein, Hu, & Tegmark (1998)

• **Massive neutrinos** suppress power strongly on small scales \[\Delta P/P \approx -8\Omega_\nu/\Omega_m\]

• CMB signal small

• Degenerate with other effects [tilt \(n\), \(\Omega_m h^2\) ...]

• CMB breaks degeneracies

• 2\(\sigma\) Detection: 0.3eV [Map (pol) + SDSS]

Power Suppression

[Graph showing power suppression with different neutrino masses]

Complementarity

[Graph showing complementarity with SDSS and MAP data points]

\[\Omega_\nu/h^2 = m_\nu/94\text{eV}\]
Angular Diameter Distance Degeneracy

Hu, astro-ph/9801234

- If $w_g < 0$, GDM has no effect on acoustic dynamics → k_{peaks}, heights independent of $w_g, \Omega_g, c_{\text{eff}}, c_{\text{vis}}$

- Angular diameter distance to last scattering → $d_A = f(w_g, \Omega_g ...)$

- One measurement two parameters

\[(\Delta T/T)^2 \propto \frac{l \times d_A(-1) / d_A(w_g)}{c_{\text{eff}}^2} = \begin{cases} 1 & \text{for } w_g = -1/6 \text{ to } -1 \end{cases} \]
Equation of State and Density
(Complementarity and Consistency)

- **CMB** determines angular diameter distance
 \[d_A = f(w_g, \Omega_g, ...)]

- **Galaxy surveys** determines shape parameter
 \[\Gamma = (1 - \Omega_g)h\] and baryonic acoustic features

- **SNIa** determines luminosity distance
 \[d_L = f(w_g, \Omega_g)\]

![Diagram showing the relationship between \(\Omega_g\) and \(w_g\) for different surveys and combinations: MAP (no pol with pol), SNIa Only, SDSS Only, MAP + SNIa, MAP + SDSS.](image)
Approaching Λ

- **Smooth** and **Clustered** distinction disappears
 \[c_{\text{eff}}^2 \text{ significantly constrained only if } w_g \gtrsim -2/3 \]

- **ISW** and **Clustering Features** disappear
 \[d_A \text{ degeneracy must be broken by SNIa, } P(k), \text{ etc} \]

- **Complementarity** and **Consistency** more important
Measuring H_0 and Ω_m
from CMB+Galaxy Surveys

Eisenstein, Hu, & Tegmark (1998)

- Neither CMB nor Galaxy Surveys have direct information on H_0
- Morphology of acoustic peaks calibrates the sound horizon and creates a standard ruler
- Measurement in redshift space determines H_0
- CMB measurement of $\Omega_m H_0^2$ determines Ω_m
- Relies on high redshift physics near recombination
- Robust to uncertainties in the missing energy
- Requires only observable acoustic oscillations
Detecting the Neutrino Background Radiation

- Neutrino number N_ν or temperature T_ν alters the matter–radiation ratio
- Degenerate with matter density $\Omega_m h^2$
- Break degeneracy with SDSS baryon/CDM ratio and/or NBR anisotropies

![Graph showing N_ν vs. $\Omega_m h^2$ with and without anisotropies]
Detecting Anisotropies in the Neutrino Background Radiation

- Neutrino quadrupole anisotropies alter the gravitational potentials that drive acoustic oscillations
- Anisotropies well modeled by viscosity in the GDM $c_{\text{vis}}^2 = 1/3$ but largely degenerate
- Detectability: 1σ, MAP (pol); 3.5σ, MAP+SDSS; 7.2σ, Planck (pol); 8.7σ, Planck+SDSS

\[
\left(\frac{\Delta T}{T} \right)^2 \times 10^{-10}
\]

Hu, astro-ph/9801234
Summary

• Upcoming high precision cosmological measurements may be inconsistent with our simple structure formation models and/or

• Provide the opportunity to observationally determine the nature of the dark matter but

• Requires the complementarity and consistency of multiple cosmological data sets

• If the equation of state of the missing energy differs significantly from Λ then we can effectively probe its clustering properties with CMB+LSS

• If we live in a simple CDM space then we can effectively bound the mass of the neutrinos and detect anisotropies in the neutrino background radiation