Contents

Foreword vii
by Paul Menchini
Foreword to the First Edition ix
by Paul Menchini
Preface xix

1 Fundamental Concepts 1
1.1 Modeling Digital Systems 2
1.2 Domains and Levels of Modeling 4
1.3 Modeling Languages 7
1.4 VHDL Modeling Concepts 8
 Elements of Behavior 9
 Elements of Structure 10
 Mixed Structural and Behavioral Models 12
 Test Benches 13
 Analysis, Elaboration and Execution 14
1.5 Learning a New Language: Lexical Elements and Syntax 16
 Lexical Elements 17
 Syntax Descriptions 23
Exercises 26

2 Scalar Data Types and Operations 29
2.1 Constants and Variables 30
 Constant and Variable Declarations 30
 Variable Assignment 32
2.2 Scalar Types 32
 Type Declarations 33
Integer Types 33
Floating-Point Types 36
Physical Types 37
Enumeration Types 40

2.3 Type Classification 46
Subtypes 46
Type Qualification 48
Type Conversion 49

2.4 Attributes of Scalar Types 49

2.5 Expressions and Operators 52
Exercises 54

3 Sequential Statements
3.1 If Statements 58
3.2 Case Statements 61
3.3 Null Statements 66
3.4 Loop Statements 67
 Exit Statements 68
 Next Statements 71
 While Loops 72
 For Loops 74
 Summary of Loop Statements 76
3.5 Assertion and Report Statements 77
Exercises 83

4 Composite Data Types and Operations
4.1 Arrays 86
 Multidimensional Arrays 88
 Array Aggregates 89
 Array Attributes 92
4.2 Unconstrained Array Types 94
 Strings 95
 Bit Vectors 95
 Standard-Logic Arrays 96
 String and Bit-String Literals 96
 Unconstrained Array Ports 97
4.3 Array Operations and Referencing 98
 Array Slices 100
 Array Type Conversions 101
4.4 Records 102
 Record Aggregates 104
Exercises 105
5 Basic Modeling Constructs 107
 5.1 Entity Declarations 108
 5.2 Architecture Bodies 110
 Concurrent Statements 111
 Signal Declarations 111
 5.3 Behavioral Descriptions 113
 Signal Assignment 113
 Signal Attributes 115
 Wait Statements 118
 Delta Delays 121
 Transport and Inertial Delay Mechanisms 124
 Process Statements 130
 Concurrent Signal Assignment Statements 131
 Concurrent Assertion Statements 138
 Entities and Passive Processes 139
 5.4 Structural Descriptions 140
 Component Instantiation and Port Maps 141
 5.5 Design Processing 149
 Analysis 149
 Design Libraries, LibraryClauses and UseClauses 151
 Elaboration 153
 Execution 156

Exercises 157

6 Case Study: A Pipelined Multiplier Accumulator 167
 6.1 Algorithm Outline 168
 MAC Entity Declaration 170
 6.2 A Behavioral Model 171
 Testing the Behavioral Model 176
 6.3 A Register-Transfer-Level Model 179
 Modules in the Register-Transfer-Level Model 181
 The Register-Transfer-Level Architecture Body 188
 Testing the Register-Transfer-Level Model 191

Exercises 193

7 Subprograms 195
 7.1 Procedures 196
 Return Statement in a Procedure 201
 7.2 Procedure Parameters 202
 Signal Parameters 206
 Default Values 209
 Unconstrained Array Parameters 210
 Summary of Procedure Parameters 212
 7.3 Concurrent Procedure Call Statements 213
7.4 Functions 215
Functional Modeling 218
Pure and Impure Functions 218
The Function Now 219

7.5 Overloading 220
Overloading Operator Symbols 222

7.6 Visibility of Declarations 223
Exercises 227

8 Packages and Use Clauses 231
8.1 Package Declarations 232
Subprograms in Package Declarations 236
Constants in Package Declarations 237
8.2 Package Bodies 239
8.3 Use Clauses 241
8.4 The Predefined Package Standard 243
8.5 IEEE Standard Packages 244
Std.Logic_1164 Multivalue Logic System 245
Standard VHDL Synthesis Packages 246
Standard VHDL Mathematical Packages 250
Exercises 255

9 Aliases 257
9.1 Aliases for Data Objects 258
9.2 Aliases for Non-Data Items 261
Exercises 264

10 Case Study: A Bit-Vector Arithmetic Package 267
10.1 The Package Interface 268
10.2 The Package Body 271
10.3 An ALU Using the Arithmetic Package 280
Exercises 282

11 Resolved Signals 285
11.1 Basic Resolved Signals 286
Composite Resolved Subtypes 290
Summary of Resolved Subtypes 294
11.2 IEEE Std.Logic_1164 Resolved Subtypes 294
11.3 Resolved Signals and Ports 297
Resolved Ports 298
Driving Value Attribute 300
11.4 Resolved Signal Parameters 300
Exercises 302
Contents

12 Generic Constants

12.1 Parameterizing Behavior 310
12.2 Parameterizing Structure 313
Exercises 315

13 Components and Configurations

13.1 Components 318
 - Component Declarations 318
 - Component Instantiation 319
 - Packaging Components 321
13.2 Configuring Component Instances 322
 - Basic Configuration Declarations 323
 - Configuring Multiple Levels of Hierarchy 325
 - Direct Instantiation of Configured Entities 328
 - Generic and Port Maps in Configurations 329
 - Deferred Component Binding 335
13.3 Configuration Specifications 337
 - Incremental Binding 338
Exercises 344

14 Generate Statements

14.1 Generating Iterative Structures 350
14.2 Conditionally Generating Structures 355
 - Recursive Structures 359
14.3 Configuration of Generate Statements 362
Exercises 367

15 Case Study: The DLX Computer System

15.1 Overview of the DLX CPU 374
 - DLX Registers 374
 - DLX Instruction Set 375
 - DLX External Interface 379
15.2 A Behavioral Model 382
 - The DLX Types Package 382
 - The DLX Entity Declaration 383
 - The DLX Instruction Set Package 384
 - The DLX Behavioral Architecture Body 392
15.3 Testing the Behavioral Model 407
 - The Test-Bench Clock Generator 408
 - The Test-Bench Memory 408
 - The Test-Bench Architecture Body and Configuration 413
15.4 A Register-Transfer-Level Model 416
 - The Arithmetic and Logic Unit 417
 - The Registers 421
Contents

The Register File 425
The Multiplexer 426
The Extenders 427
The Architecture Body 428
The Controller 434
The Configuration Declaration 450

15.5 Testing the Register-Transfer-Level Model 452
Exercises 456

16 Guards and Blocks

16.1 Guarded Signals and Disconnection 460
 The Driving Attribute 464
 Guarded Ports 465
 Guarded Signal Parameters 467

16.2 Blocks and Guarded Signal Assignment 469
 Explicit Guard Signals 472
 Disconnection Specifications 474

16.3 Using Blocks for Structural Modularity 475
 Generics and Ports in Blocks 478
 Configuring Designs with Blocks 479

Exercises 482

17 Access Types and Abstract Data Types

17.1 Access Types 488
 Access Type Declarations and Allocators 488
 Assignment and Equality of Access Values 490
 Access Types for Records and Arrays 492

17.2 Linked Data Structures 494
 Deallocation and Storage Management 498

17.3 Abstract Data Types Using Packages 499
 Container ADTs 504

Exercises 512

18 Files and Input/Output

18.1 Files 516
 File Declarations 516
 Reading from Files 517
 Writing to Files 520
 Files Declared in Subprograms 523
 Explicit Open and Close Operations 524
 File Parameters in Subprograms 527
 Portability of Files 529

18.2 The Package Textio 529
 Textio Read Operations 531
 Textio Write Operations 541
Contents

Reading and Writing User-Defined Types 543
Exercises 544

19 Case Study: Queuing Networks 549
19.1 Queuing Network Concepts 550
19.2 Queuing Network Modules 551
 Random Number Generator 551
 A Package for Token and Arc Types 555
 The Token Source Module 557
 The Token Sink Module 561
 The Queue Module 563
 The Token Server Module 569
 The Fork Module 571
 The Join Module 575
19.3 A Queuing Network for a Disk System 578
Exercises 584

20 Attributes and Groups 585
20.1 Predefined Attributes 586
 Attributes of Scalar Types 586
 Attributes of Array Types and Objects 587
 Attributes of Signals 587
 Attributes of Named Items 588
20.2 User-Defined Attributes 595
 Attribute Declarations 596
 Attribute Specifications 596
 The Attribute Foreign 606
20.3 Groups 608
Exercises 611

21 Miscellaneous Topics 615
21.1 Buffer and Linkage Ports 616
21.2 Conversion Functions in Association Lists 618
21.3 Postponed Processes 623
21.4 Shared Variables 626
Exercises 636

A Synthesis 639
A.1 Use of Data Types 640
A.2 Interpretation of Standard Logic Values 642
A.3 Modeling Combinatorial Logic 643
A.4 Modeling Sequential Logic 644
A.5 VHDL Modeling Restrictions 650
Contents

The Predefined Package Standard
655

IEEE Standard Packages
659

- C.1 Std_Logic_1164 Multivalue Logic System 659
- C.2 Standard 1076.3 VHDL Synthesis Packages 662
- C.3 Standard 1076.2 VHDL Mathematical Packages 665

Related Standards
671

- D.1 IEEE VHDL Standards 671
- D.2 Other Design Automation Standards 677

VHDL Syntax
683

- E.1 Design File 685
- E.2 Library Unit Declarations 685
- E.3 Declarations and Specifications 686
- E.4 Type Definitions 689
- E.5 Concurrent Statements 690
- E.6 Sequential Statements 692
- E.7 Interfaces and Associations 693
- E.8 Expressions 694

Differences among VHDL-87, VHDL-93 and VHDL-2001
697

- F.1 Lexical Differences 697
- F.2 Syntactic Differences 698
- F.3 Semantic Differences 699
- F.4 Differences in the Standard Environment 700
- F.5 VHDL-93 Facilities Not in VHDL-87 701
- F.6 VHDL-2001 Facilities Not in VHDL-87 or VHDL-93 701
- F.7 Features under Consideration for Removal 701

Answers to Exercises
703

References
723

Index
725