Contents

Editor's foreword xvii
Preface ... xix

Part I Principles and elementary applications

1 Plausible reasoning 3
 1.1 Deductive and plausible reasoning ... 3
 1.2 Analogies with physical theories 6
 1.3 The thinking computer 7
 1.4 Introducing the robot 8
 1.5 Boolean algebra 9
 1.6 Adequate sets of operations 12
 1.7 The basic desiderata 17
 1.8 Comments 19
 1.8.1 Common language vs. formal logic 21
 1.8.2 Nitpicking 23

2 The quantitative rules 24
 2.1 The product rule 24
 2.2 The sum rule 30
 2.3 Qualitative properties 35
 2.4 Numerical values 37
 2.5 Notation and finite-sets policy 43
 2.6 Comments 44
 2.6.1 ‘Subjective’ vs. ‘objective’ 44
 2.6.2 Gödel’s theorem 45
 2.6.3 Venn diagrams 47
 2.6.4 The ‘Kolmogorov axioms’ 49

3 Elementary sampling theory 51
 3.1 Sampling without replacement 52
 3.2 Logic vs. propensity 60
 3.3 Reasoning from less precise information 64
 3.4 Expectations 66
 3.5 Other forms and extensions 68
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.6 Probability as a mathematical tool</td>
<td>68</td>
</tr>
<tr>
<td>3.7 The binomial distribution</td>
<td>69</td>
</tr>
<tr>
<td>3.8 Sampling with replacement</td>
<td>72</td>
</tr>
<tr>
<td>3.8.1 Digression: a sermon on reality vs. models</td>
<td>73</td>
</tr>
<tr>
<td>3.9 Correction for correlations</td>
<td>75</td>
</tr>
<tr>
<td>3.10 Simplification</td>
<td>81</td>
</tr>
<tr>
<td>3.11 Comments</td>
<td>82</td>
</tr>
<tr>
<td>3.11.1 A look ahead</td>
<td>84</td>
</tr>
<tr>
<td>4 Elementary hypothesis testing</td>
<td>86</td>
</tr>
<tr>
<td>4.1 Prior probabilities</td>
<td>87</td>
</tr>
<tr>
<td>4.2 Testing binary hypotheses with binary data</td>
<td>90</td>
</tr>
<tr>
<td>4.3 Nonextensibility beyond the binary case</td>
<td>97</td>
</tr>
<tr>
<td>4.4 Multiple hypothesis testing</td>
<td>98</td>
</tr>
<tr>
<td>4.4.1 Digression on another derivation</td>
<td>101</td>
</tr>
<tr>
<td>4.5 Continuous probability distribution functions</td>
<td>107</td>
</tr>
<tr>
<td>4.6 Testing an infinite number of hypotheses</td>
<td>109</td>
</tr>
<tr>
<td>4.6.1 Historical digression</td>
<td>112</td>
</tr>
<tr>
<td>4.7 Simple and compound (or composite) hypotheses</td>
<td>115</td>
</tr>
<tr>
<td>4.8 Comments</td>
<td>116</td>
</tr>
<tr>
<td>4.8.1 Etymology</td>
<td>116</td>
</tr>
<tr>
<td>4.8.2 What have we accomplished?</td>
<td>117</td>
</tr>
<tr>
<td>5 Queer uses for probability theory</td>
<td>119</td>
</tr>
<tr>
<td>5.1 Extrasensory perception</td>
<td>119</td>
</tr>
<tr>
<td>5.2 Mrs Stewart’s telepathic powers</td>
<td>120</td>
</tr>
<tr>
<td>5.2.1 Digression on the normal approximation</td>
<td>122</td>
</tr>
<tr>
<td>5.2.2 Back to Mrs Stewart</td>
<td>122</td>
</tr>
<tr>
<td>5.3 Converging and diverging views</td>
<td>126</td>
</tr>
<tr>
<td>5.4 Visual perception – evolution into Bayesianity?</td>
<td>132</td>
</tr>
<tr>
<td>5.5 The discovery of Neptune</td>
<td>133</td>
</tr>
<tr>
<td>5.5.1 Digression on alternative hypotheses</td>
<td>135</td>
</tr>
<tr>
<td>5.5.2 Back to Newton</td>
<td>137</td>
</tr>
<tr>
<td>5.6 Horse racing and weather forecasting</td>
<td>140</td>
</tr>
<tr>
<td>5.6.1 Discussion</td>
<td>142</td>
</tr>
<tr>
<td>5.7 Paradoxes of intuition</td>
<td>143</td>
</tr>
<tr>
<td>5.8 Bayesian jurisprudence</td>
<td>144</td>
</tr>
<tr>
<td>5.9 Comments</td>
<td>146</td>
</tr>
<tr>
<td>5.9.1 What is queer?</td>
<td>148</td>
</tr>
<tr>
<td>6 Elementary parameter estimation</td>
<td>149</td>
</tr>
<tr>
<td>6.1 Inversion of the urn distributions</td>
<td>149</td>
</tr>
<tr>
<td>6.2 Both N and R unknown</td>
<td>150</td>
</tr>
<tr>
<td>6.3 Uniform prior</td>
<td>152</td>
</tr>
<tr>
<td>6.4 Predictive distributions</td>
<td>154</td>
</tr>
</tbody>
</table>
Contents

7.21 Application to economics 233
7.22 The great inequality of Jupiter and Saturn 234
7.23 Resolution of distributions into Gaussians 235
7.24 Hermite polynomial solutions 236
7.25 Fourier transform relations 238
7.26 There is hope after all 239
7.27 Comments 240
 7.27.1 Terminology again 240
8 Sufficiency, ancillarity, and all that 243
 8.1 Sufficiency 243
 8.2 Fisher sufficiency 245
 8.2.1 Examples 246
 8.2.2 The Blackwell–Rao theorem 247
 8.3 Generalized sufficiency 248
 8.4 Sufficiency plus nuisance parameters 249
 8.5 The likelihood principle 250
 8.6 Ancillarity 253
 8.7 Generalized ancillary information 254
 8.8 Asymptotic likelihood: Fisher information 256
 8.9 Combining evidence from different sources 257
 8.10 Pooling the data 260
 8.10.1 Fine-grained propositions 261
 8.11 Sam’s broken thermometer 262
 8.12 Comments 264
 8.12.1 The fallacy of sample re-use 264
 8.12.2 A folk theorem 266
 8.12.3 Effect of prior information 267
 8.12.4 Clever tricks and gamesmanship 267
9 Repetitive experiments: probability and frequency 270
 9.1 Physical experiments 271
 9.2 The poorly informed robot 274
 9.3 Induction 276
 9.4 Are there general inductive rules? 277
 9.5 Multiplicity factors 280
 9.6 Partition function algorithms 281
 9.6.1 Solution by inspection 282
 9.7 Entropy algorithms 285
 9.8 Another way of looking at it 289
 9.9 Entropy maximization 290
 9.10 Probability and frequency 292
 9.11 Significance tests 293
 9.11.1 Implied alternatives 296
Contents

9.12 Comparison of psi and chi-squared 300
9.13 The chi-squared test 302
9.14 Generalization 304
9.15 Halley’s mortality table 305
9.16 Comments 310
 9.16.1 The irrationalists 310
 9.16.2 Superstitions 312

10 Physics of ‘random experiments’ 314
 10.1 An interesting correlation 314
 10.2 Historical background 315
 10.3 How to cheat at coin and die tossing 317
 10.3.1 Experimental evidence 320
 10.4 Bridge hands 321
 10.5 General random experiments 324
 10.6 Induction revisited 326
 10.7 But what about quantum theory? 327
 10.8 Mechanics under the clouds 329
 10.9 More on coins and symmetry 331
 10.10 Independence of tosses 335
 10.11 The arrogance of the uninformed 338

Part II Advanced applications

11 Discrete prior probabilities: the entropy principle 343
 11.1 A new kind of prior information 343
 11.2 Minimum $\sum p_i^2$ 345
 11.3 Entropy: Shannon’s theorem 346
 11.4 The Wallis derivation 351
 11.5 An example 354
 11.6 Generalization: a more rigorous proof 355
 11.7 Formal properties of maximum entropy distributions 358
 11.8 Conceptual problems – frequency correspondence 365
 11.9 Comments 370

12 Ignorance priors and transformation groups 372
 12.1 What are we trying to do? 372
 12.2 Ignorance priors 374
 12.3 Continuous distributions 374
 12.4 Transformation groups 378
 12.4.1 Location and scale parameters 378
 12.4.2 A Poisson rate 382
 12.4.3 Unknown probability for success 382
 12.4.4 Bertrand’s problem 386
 12.5 Comments 394
13 Decision theory, historical background 397
 13.1 Inference vs. decision 397
 13.2 Daniel Bernoulli's suggestion 398
 13.3 The rationale of insurance 400
 13.4 Entropy and utility 402
 13.5 The honest weatherman 402
 13.6 Reactions to Daniel Bernoulli and Laplace 404
 13.7 Wald's decision theory 406
 13.8 Parameter estimation for minimum loss 410
 13.9 Reformulation of the problem 412
 13.10 Effect of varying loss functions 415
 13.11 General decision theory 417
 13.12 Comments 418
 13.12.1 'Objectivity' of decision theory 418
 13.12.2 Loss functions in human society 421
 13.12.3 A new look at the Jeffreys prior 423
 13.12.4 Decision theory is not fundamental 423
 13.12.5 Another dimension? 424
14 Simple applications of decision theory 426
 14.1 Definitions and preliminaries 426
 14.2 Sufficiency and information 428
 14.3 Loss functions and criteria of optimum performance 430
 14.4 A discrete example 432
 14.5 How would our robot do it? 437
 14.6 Historical remarks 438
 14.6.1 The classical matched filter 439
 14.7 The widget problem 440
 14.7.1 Solution for Stage 2 443
 14.7.2 Solution for Stage 3 445
 14.7.3 Solution for Stage 4 449
 14.8 Comments 450
15 Paradoxes of probability theory 451
 15.1 How do paradoxes survive and grow? 451
 15.2 Summing a series the easy way 452
 15.3 Nonconglomerability 453
 15.4 The tumbling tetrahedra 456
 15.5 Solution for a finite number of tosses 459
 15.6 Finite vs. countable additivity 464
 15.7 The Borel–Kolmogorov paradox 467
 15.8 The marginalization paradox 470
 15.8.1 On to greater disasters 474
Contents

15.9 Discussion
15.9.1 The DSZ Example #5
15.9.2 Summary
15.10 A useful result after all?
15.11 How to mass-produce paradoxes
15.12 Comments

16 Orthodox methods: historical background
16.1 The early problems
16.2 Sociology of orthodox statistics
16.3 Ronald Fisher, Harold Jeffreys, and Jerzy Neyman
16.4 Pre-data and post-data considerations
16.5 The sampling distribution for an estimator
16.6 Pro-causal and anti-causal bias
16.7 What is real, the probability or the phenomenon?
16.8 Comments
16.8.1 Communication difficulties

17 Principles and pathology of orthodox statistics
17.1 Information loss
17.2 Unbiased estimators
17.3 Pathology of an unbiased estimate
17.4 The fundamental inequality of the sampling variance
17.5 Periodicity: the weather in Central Park
17.5.1 The folly of pre-filtering data
17.6 A Bayesian analysis
17.7 The folly of randomization
17.8 Fisher: common sense at Rothamsted
17.8.1 The Bayesian safety device
17.9 Missing data
17.10 Trend and seasonality in time series
17.10.1 Orthodox methods
17.10.2 The Bayesian method
17.10.3 Comparison of Bayesian and orthodox estimates
17.10.4 An improved orthodox estimate
17.10.5 The orthodox criterion of performance
17.11 The general case
17.12 Comments

18 The A_p distribution and rule of succession
18.1 Memory storage for old robots
18.2 Relevance
18.3 A surprising consequence
18.4 Outer and inner robots
Contents

18.5 An application 561
18.6 Laplace's rule of succession 563
18.7 Jeffreys' objection 566
18.8 Bass or carp? 567
18.9 So where does this leave the rule? 568
18.10 Generalization 568
18.11 Confirmation and weight of evidence 571
 18.11.1 Is indifference based on knowledge or ignorance? 573
18.12 Carnap's inductive methods 574
18.13 Probability and frequency in exchangeable sequences 576
18.14 Prediction of frequencies 576
18.15 One-dimensional neutron multiplication 579
 18.15.1 The frequentist solution 579
 18.15.2 The Laplace solution 581
18.16 The de Finetti theorem 586
18.17 Comments 588

19 Physical measurements 589
19.1 Reduction of equations of condition 589
19.2 Reformulation as a decision problem 592
 19.2.1 Sermon on Gaussian error distributions 592
19.3 The underdetermined case: K is singular 594
19.4 The overdetermined case: K can be made nonsingular 595
19.5 Numerical evaluation of the result 597
19.6 Accuracy of the estimates 599
19.7 Comments 601
 19.7.1 A paradox 599

20 Model comparison 601
20.1 Formulation of the problem 602
20.2 The fair judge and the cruel realist 603
 20.2.1 Parameters known in advance 604
 20.2.2 Parameters unknown 604
20.3 But where is the idea of simplicity? 605
20.4 An example: linear response models 607
 20.4.1 Digression: the old sermon still another time 608
20.5 Comments 610
 20.5.1 Final causes 610

21 Outliers and robustness 615
21.1 The experimenter's dilemma 615
21.2 Robustness 617
21.3 The two-model model 619
21.4 Exchangeable selection 620
21.5 The general Bayesian solution 622