Finite Elements and Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics

Howard C. Elman David J. Silvester
Andrew J. Wathen

OXFORD UNIVERSITY PRESS
CONTENTS

0 Models of incompressible fluid flow 1

1 The Poisson equation 10
 1.1 Reference problems 11
 1.2 Weak formulation 14
 1.3 The Galerkin finite element method 17
 1.3.1 Triangular finite elements (R^2) 20
 1.3.2 Quadrilateral elements (R^2) 22
 1.3.3 Tetrahedral elements (R^3) 25
 1.3.4 Brick elements (R^3) 26
 1.4 Implementation aspects 27
 1.4.1 Triangular element matrices 28
 1.4.2 Quadrilateral element matrices 31
 1.4.3 Assembly of the Galerkin system 33
 1.5 Theory of errors 36
 1.5.1 A priori error bounds 38
 1.5.2 A posteriori error bounds 48
 1.6 Matrix properties 56
 Problems 61
 Computational exercises 66

2 Solution of discrete Poisson problems 68
 2.1 The conjugate gradient method 69
 2.1.1 Convergence analysis 73
 2.1.2 Stopping criteria 75
 2.2 Preconditioning 78
 2.3 Singular systems are not a problem 83
 2.4 The Lanczos and minimum residual methods 84
 2.5 Multigrid 88
 2.5.1 Two-grid convergence theory 95
 2.5.2 Extending two-grid to multigrid 101
 Problems 107
 Computational exercises 110

3 The convection–diffusion equation 113
 3.1 Reference problems 115
 3.2 Weak formulation and the convection term 120
 3.3 Approximation by finite elements 123
 3.3.1 The Galerkin finite element method 123
 3.3.2 The streamline diffusion method 126

xi
3.4 Theory of errors
 3.4.1 A priori error bounds
 3.4.2 A posteriori error bounds
3.5 Matrix properties
 3.5.1 Computational molecules and Fourier analysis
 3.5.2 Analysis of difference equations
Discussion and bibliographical notes
Problems
Computational exercises

4 Solution of discrete convection–diffusion problems
4.1 Krylov subspace methods
 4.1.1 GMRES
 4.1.2 Biorthogonalization methods
4.2 Preconditioning methods and splitting operators
 4.2.1 Splitting operators for convection–diffusion systems
 4.2.2 Matrix analysis of convergence
 4.2.3 Asymptotic analysis of convergence
 4.2.4 Practical considerations
4.3 Multigrid
 4.3.1 Practical issues
 4.3.2 Tools of analysis: smoothing and approximation properties
 4.3.3 Smoothing
 4.3.4 Analysis
Discussion and bibliographical notes
Problems
Computational exercises

5 The Stokes equations
5.1 Reference problems
5.2 Weak formulation
5.3 Approximation using mixed finite elements
 5.3.1 Stable rectangular elements \((Q_2-Q_1, Q_2-P-1, Q_2-P_0)\)
 5.3.2 Stabilized rectangular elements \((Q_1-P_0, Q_1-Q_1)\)
 5.3.3 Triangular elements
 5.3.4 Brick and tetrahedral elements
5.4 Theory of errors
 5.4.1 A priori error bounds
 5.4.2 A posteriori error bounds
5.5 Matrix properties
 5.5.1 Stable mixed approximation
 5.5.2 Stabilized mixed approximation
Discussion and bibliographical notes
Problems
Computational exercises
CONTENTS

6 Solution of discrete Stokes problems 285
 6.1 The preconditioned MINRES method 286
 6.2 Preconditioning 289
 6.2.1 General strategies for preconditioning 291
 6.2.2 Eigenvalue bounds 296
 6.2.3 Equivalent norms for MINRES 303
 6.2.4 MINRES convergence analysis 306
 Discussion and bibliographical notes 308
 Problems 309
 Computational exercises 310

7 The Navier–Stokes equations 313
 7.1 Reference problems 315
 7.2 Weak formulation and linearization 318
 7.2.1 Stability theory and bifurcation analysis 320
 7.2.2 Nonlinear iteration 324
 7.3 Mixed finite element approximation 327
 7.4 Theory of errors 330
 7.4.1 A priori error bounds 331
 7.4.2 A posteriori error bounds 333
 Discussion and bibliographical notes 337
 Problems 339
 Computational exercises 339

8 Solution of discrete Navier–Stokes problems 341
 8.1 General strategies for preconditioning 342
 8.2 Approximations to the Schur complement operator 346
 8.2.1 The pressure convection–diffusion preconditioner 347
 8.2.2 The least-squares commutator preconditioner 353
 8.3 Performance and analysis 354
 8.3.1 Ideal versions of the preconditioners 355
 8.3.2 Use of iterative methods for subproblems 359
 8.3.3 Convergence analysis 364
 8.3.4 Enclosed flow: singular systems are not a problem 365
 8.3.5 Relation to SIMPLE iteration 368
 8.4 Nonlinear iteration 370
 Discussion and bibliographical notes 375
 Problems 378
 Computational exercises 379

Bibliography 382

Index 397