Nuclear Electronics

Superconducting Detectors and Processing Techniques

Vladimir Polushkin

High Wycombe, UK

John Wiley & Sons, Ltd
Contents

Preface
vii

1 Detection Methods with Cryogenic Particle and Radiation Sensors
1.1 Quasiparticle detectors: Interaction of nuclear radiation with superconductors
1.2 Superconducting tunnel junction detectors
1.3 Microcalorimeters based on transition edge sensor
1.4 Other cryogenic detectors

2 Front-end Read-out Electronic Circuits
2.1 FET transconductance preamplifiers
2.2 Dynamics and noise of JFET amplifiers
2.3 SQUID current amplifier
2.4 SQUID read-out electronics
2.5 SQUID amplifier in the small-signal limit (noise)
2.6 SQUID current amplifier in the large-signal limit (dynamics)
2.7 SQUID current amplifier at ultralow temperature
2.8 SQUID voltage amplifier

3 Energy Resolution (FWHM) of Superconducting Detectors
3.1 Signal-to-noise ratio, equivalent noise charge and noise linewidth of spectrometers: General formulations
3.2 Signal-to-noise ratio, ENC, energy resolution at FWHM of Tunnel Junctions
3.3 Noise equivalent power, energy resolution of superconductor microcalorimeters
3.4 Dynamics and noise of time-variant detector systems 159
3.5 Signal-to-noise ratio of detector arrays with multiplexed read-out 163

4 Pulse Processing Electronics 175
4.1 Pulse processing techniques 176
4.2 Analogue-to-digital conversion 198
4.3 Digital rise (fall) time discrimination 214
4.4 Superconductor digital spectrometer 218
4.5 Selected topics on the hardware design 221

5 Applications of Systems Based on Superconducting Detectors 233
5.1 Electron-Probe Nanoanalysis with Superconductor detectors 235
5.2 Biopolymer mass spectrometer 270

6 Selected Topics of Analysis and Synthesis of Detector Systems 278
6.1 Analogue electronic circuitry analysis and design principles 280
6.2 Discrete-time systems and Systems with periodically changing parameters 347
6.3 Inductance calculations of the superconducting structures 380

Index 391