Contents

Preface
Acknowledgments
Notation

Part I Overview and background topics

1 Introduction
 Summary
 1.1 Quantum theory and the origins of electronic structure
 1.2 Emergence of quantitative calculations
 1.3 The greatest challenge: electron correlation
 1.4 Recent developments
 Select further reading

2 Overview
 Summary
 2.1 Electronic ground state: bonding and characteristic structures
 2.2 Volume or pressure as the most fundamental variable
 2.3 Elasticity: stress–strain relations
 2.4 Magnetism and electron–electron interactions
 2.5 Phonons and displacive phase transitions
 2.6 Thermal properties: solids, liquids, and phase diagrams
 2.7 Atomic motion: diffusion, reactions, and catalysis
 2.8 Surfaces, interfaces, and defects
 2.9 Nanomaterials: between molecules and condensed matter
 2.10 Electronic excitations: bands and band gaps
 2.11 Electronic excitations: heat capacity, conductivity, and optical spectra
 2.12 Example of MgB$_2$: bands, phonons, and superconductivity
 2.13 The continuing challenge: electron correlation
 Select further reading
Contents

3 Theoretical background 52
 Summary 52
 3.1 Basic equations for interacting electrons and nuclei 52
 3.2 Coulomb interaction in condensed matter 56
 3.3 Force and stress theorems 56
 3.4 Statistical mechanics and the density matrix 60
 3.5 Independent-electron approximations 61
 3.6 Exchange and correlation 65
 3.7 Perturbation theory and the “2n + 1 theorem” 68
 Select further reading 70
 Exercises 71

4 Periodic solids and electron bands 73
 Summary 73
 4.1 Structures of crystals: lattice + basis 73
 4.2 The reciprocal lattice and Brillouin zone 81
 4.3 Excitations and the Bloch theorem 85
 4.4 Time reversal and inversion symmetries 89
 4.5 Point symmetries 91
 4.6 Integration over the Brillouin zone and special points 92
 4.7 Density of states 96
 Select further reading 96
 Exercises 97

5 Uniform electron gas and simple metals 100
 Summary 100
 5.1 Non-interacting and Hartree-Fock approximations 102
 5.2 The correlation hole and energy 107
 5.3 Binding in sp-bonded metals 112
 5.4 Excitations and the Lindhard dielectric function 113
 Select further reading 116
 Exercises 116

Part II Density functional theory

6 Density functional theory: foundations 119
 Summary 119
 6.1 Thomas–Fermi–Dirac approximation: example of a functional 120
 6.2 The Hohenberg–Kohn theorems 121
 6.3 Constrained search formulation of density functional theory 125
 6.4 Extensions of Hohenberg–Kohn theorems 126
 6.5 Intricacies of exact density functional theory 129
 6.6 Difficulties in proceeding from the density 131
 Select further reading 132
 Exercises 133
Contents

7 The Kohn–Sham ansatz 135
 Summary 135
 7.1 Replacing one problem with another 135
 7.2 The Kohn–Sham variational equations 138
 7.3 E_{xc}, V_{xc}, and the exchange–correlation hole 139
 7.4 Meaning of the eigenvalues 144
 7.5 Intricacies of exact Kohn–Sham theory 145
 7.6 Time-dependent density functional theory 147
 7.7 Other generalizations of the Kohn–Sham approach 148
 Select further reading 149
 Exercises 149

8 Functionals for exchange and correlation 152
 Summary 152
 8.1 The local spin density approximation (LSDA) 152
 8.2 Generalized-gradient approximations (GGAs) 154
 8.3 LDA and GGA expressions for the potential $V_{xc}(r)$ 157
 8.4 Non-collinear spin density 159
 8.5 Non-local density formulations: ADA and WDA 160
 8.6 Orbital-dependent functionals I: SIC and LDA + U 160
 8.7 Orbital-dependent functionals II: OEP and EXX 162
 8.8 Hybrid functionals 165
 8.9 Tests of functionals 166
 Select further reading 169
 Exercises 170

9 Solving Kohn–Sham equations 172
 Summary 172
 9.1 Self-consistent coupled Kohn–Sham equations 172
 9.2 Total energy functionals 174
 9.3 Achieving self-consistency 179
 9.4 Force and stress 182
 Select further reading 184
 Exercises 184

Part III Important preliminaries on atoms

10 Electronic structure of atoms 187
 Summary 187
 10.1 One-electron radial Schrödinger equation 187
 10.2 Independent-particle equations: spherical potentials 189
 10.3 Open-shell atoms: non-spherical potentials 190
 10.4 Relativistic Dirac equation and spin–orbit interactions 193
 10.5 Example of atomic states: transition elements 195
 10.6 Delta-SCF: electron addition, removal, and interaction energies 198
Contents

10.7 Atomic sphere approximation in solids 199
 Select further reading 201
 Exercises 202

11 Pseudopotentials 204
 Summary 204
 11.1 Scattering amplitudes and pseudopotentials 204
 11.2 Orthogonalized plane waves (OPWs) and pseudopotentials 207
 11.3 Model ion potentials 211
 11.4 Norm-conserving pseudopotentials (NCPPs) 212
 11.5 Generation of l-dependent norm-conserving pseudopotentials 215
 11.6 Unscreening and core corrections 218
 11.7 Transferability and hardness 219
 11.8 Separable pseudopotential operators and projectors 220
 11.9 Extended norm conservation: beyond the linear regime 221
 11.10 Ultrasoft pseudopotentials 222
 11.11 Projector augmented waves (PAWs): keeping the full wavefunction 225
 11.12 Additional topics 227
 Select further reading 228
 Exercises 229

Part IV Determination of electronic structure: the three basic methods

12 Plane waves and grids: basics 236
 Summary 236
 12.1 The independent-particle Schrödinger equation in a plane wave basis 236
 12.2 The Bloch theorem and electron bands 238
 12.3 Nearly-free-electron approximation 239
 12.4 Form factors and structure factors 240
 12.5 Approximate atomic-like potentials 242
 12.6 Empirical pseudopotential method (EPM) 243
 12.7 Calculation of density: introduction of grids 246
 12.8 Real-space methods 248
 Select further reading 251
 Exercises 251

13 Plane waves and grids: full calculations 254
 Summary 254
 13.1 “Ab initio” pseudopotential method 255
 13.2 Projector augmented waves (PAWs) 258
 13.3 Simple crystals: structures, bands, ... 259
 13.4 Supercells: surfaces, interfaces, phonons, defects 265
 13.5 Clusters and molecules 269
Contents

Select further reading
Exercises

14 Localized orbitals: tight-binding

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.1 Localized atom-centered orbitals</td>
<td>273</td>
</tr>
<tr>
<td>14.2 Matrix elements with atomic orbitals</td>
<td>274</td>
</tr>
<tr>
<td>14.3 Slater–Koster two-center approximation</td>
<td>278</td>
</tr>
<tr>
<td>14.4 Tight-binding bands: illustrative examples</td>
<td>279</td>
</tr>
<tr>
<td>14.5 Square lattice and CuO$_2$ planes</td>
<td>282</td>
</tr>
<tr>
<td>14.6 Examples of bands: semiconductors and transition metals</td>
<td>283</td>
</tr>
<tr>
<td>14.7 Electronic states of nanotubes</td>
<td>285</td>
</tr>
<tr>
<td>14.8 Total energy, force, and stress in tight-binding</td>
<td>289</td>
</tr>
<tr>
<td>14.9 Transferability: non-orthogonality and environment dependence</td>
<td>291</td>
</tr>
<tr>
<td>Select further reading</td>
<td>293</td>
</tr>
<tr>
<td>Exercises</td>
<td>294</td>
</tr>
</tbody>
</table>

15 Localized orbitals: full calculations

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.1 Solution of Kohn–Sham equations in localized bases</td>
<td>298</td>
</tr>
<tr>
<td>15.2 Analytic basis functions: gaussians</td>
<td>300</td>
</tr>
<tr>
<td>15.3 Gaussian methods: ground state and excitation energies</td>
<td>302</td>
</tr>
<tr>
<td>15.4 Numerical orbitals</td>
<td>304</td>
</tr>
<tr>
<td>15.5 Localized orbitals: total energy, force, and stress</td>
<td>307</td>
</tr>
<tr>
<td>15.6 Applications of numerical local orbitals</td>
<td>309</td>
</tr>
<tr>
<td>15.7 Green's function and recursion methods</td>
<td>310</td>
</tr>
<tr>
<td>15.8 Mixed basis</td>
<td>310</td>
</tr>
<tr>
<td>Select further reading</td>
<td>311</td>
</tr>
<tr>
<td>Exercises</td>
<td>311</td>
</tr>
</tbody>
</table>

16 Augmented functions: APW, KKR, MTO

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.1 Augmented plane waves (APWs) and “muffin tins”</td>
<td>313</td>
</tr>
<tr>
<td>16.2 Solving APW equations: examples</td>
<td>318</td>
</tr>
<tr>
<td>16.3 The KKR or multiple-scattering theory (MST) method</td>
<td>323</td>
</tr>
<tr>
<td>16.4 Alloys and the coherent potential approximation (CPA)</td>
<td>329</td>
</tr>
<tr>
<td>16.5 Muffin-tin orbitals (MTOs)</td>
<td>331</td>
</tr>
<tr>
<td>16.6 Canonical bands</td>
<td>333</td>
</tr>
<tr>
<td>16.7 Localized “tight-binding” MTO and KKR formulations</td>
<td>338</td>
</tr>
<tr>
<td>16.8 Total energy, force, and pressure in augmented methods</td>
<td>341</td>
</tr>
<tr>
<td>Select further reading</td>
<td>342</td>
</tr>
<tr>
<td>Exercises</td>
<td>342</td>
</tr>
</tbody>
</table>

17 Augmented functions: linear methods

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.1 Canonical bands</td>
<td>345</td>
</tr>
</tbody>
</table>

Select further reading
Exercises
Part V Predicting properties of matter from electronic structure – recent developments

18 Quantum molecular dynamics (QMD)
 Summary
 18.1 Molecular dynamics (MD): forces from the electrons
 18.2 Car–Parrinello unified algorithm for electrons and ions
 18.3 Expressions for plane waves
 18.4 Alternative approaches to density functional QMD
 18.5 Non-self-consistent QMD methods
 18.6 Examples of simulations
 Select further reading
 Exercises

19 Response functions: phonons, magnons, ...
 Summary
 19.1 Lattice dynamics from electronic structure theory
 19.2 The direct approach: “frozen phonons,” magnons,...
 19.3 Phonons and density response functions
 19.4 Green’s function formulation
 19.5 Variational expressions
 19.6 Periodic perturbations and phonon dispersion curves
 19.7 Dielectric response functions, effective charges,...
 19.8 Electron–phonon interactions and superconductivity
 19.9 Magnons and spin response functions
 Select further reading
 Exercises

20 Excitation spectra and optical properties
 Summary
 20.1 Dielectric response for non-interacting particles
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.2 Time-dependent density functional theory and linear response</td>
<td>408</td>
</tr>
<tr>
<td>20.3 Variational Green's function methods for dynamical linear response</td>
<td>411</td>
</tr>
<tr>
<td>20.4 Explicit real-time calculations</td>
<td>412</td>
</tr>
<tr>
<td>20.5 Beyond the adiabatic local approximation</td>
<td>416</td>
</tr>
<tr>
<td>Select further reading</td>
<td>416</td>
</tr>
<tr>
<td>Exercises</td>
<td>417</td>
</tr>
<tr>
<td>21 Wannier functions</td>
<td>418</td>
</tr>
<tr>
<td>21.1 Definition and properties</td>
<td>418</td>
</tr>
<tr>
<td>21.2 "Maximally projected" Wannier functions</td>
<td>421</td>
</tr>
<tr>
<td>21.3 Maximally localized Wannier functions</td>
<td>422</td>
</tr>
<tr>
<td>21.4 Non-orthogonal localized functions</td>
<td>428</td>
</tr>
<tr>
<td>21.5 Wannier functions for "entangled bands"</td>
<td>429</td>
</tr>
<tr>
<td>Select further reading</td>
<td>431</td>
</tr>
<tr>
<td>Exercises</td>
<td>432</td>
</tr>
<tr>
<td>22 Polarization, localization, and Berry's phases</td>
<td>434</td>
</tr>
<tr>
<td>22.1 Polarization: the fundamental difficulty</td>
<td>436</td>
</tr>
<tr>
<td>22.2 Geometric Berry's phase theory of polarization</td>
<td>439</td>
</tr>
<tr>
<td>22.3 Relation to centers of Wannier functions</td>
<td>442</td>
</tr>
<tr>
<td>22.4 Calculation of polarization in crystals</td>
<td>442</td>
</tr>
<tr>
<td>22.5 Localization: a rigorous measure</td>
<td>444</td>
</tr>
<tr>
<td>22.6 Geometric Berry's phase theory of spin waves</td>
<td>446</td>
</tr>
<tr>
<td>Select further reading</td>
<td>447</td>
</tr>
<tr>
<td>Exercises</td>
<td>447</td>
</tr>
<tr>
<td>23 Locality and linear scaling O(N) methods</td>
<td>450</td>
</tr>
<tr>
<td>23.1 Locality and linear scaling in many-particle quantum systems</td>
<td>451</td>
</tr>
<tr>
<td>23.2 Building the hamiltonian</td>
<td>454</td>
</tr>
<tr>
<td>23.3 Solution of equations: non-variational methods</td>
<td>455</td>
</tr>
<tr>
<td>23.4 Variational density matrix methods</td>
<td>463</td>
</tr>
<tr>
<td>23.5 Variational (generalized) Wannier function methods</td>
<td>466</td>
</tr>
<tr>
<td>23.6 Linear-scaling self-consistent density functional calculations</td>
<td>469</td>
</tr>
<tr>
<td>23.7 Factorized density matrix for large basis sets</td>
<td>470</td>
</tr>
<tr>
<td>23.8 Combining the methods</td>
<td>472</td>
</tr>
<tr>
<td>Select further reading</td>
<td>472</td>
</tr>
<tr>
<td>Exercises</td>
<td>473</td>
</tr>
<tr>
<td>24 Where to find more</td>
<td>475</td>
</tr>
</tbody>
</table>

Appendix A Functional equations

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summary</td>
<td>476</td>
</tr>
</tbody>
</table>
A. Basic definitions and variational equations
- A.1 Basic definitions and variational equations 476
- A.2 Functionals in density functional theory including gradients 477
 - Select further reading 478
 - Exercises 478

Appendix B LSDA and GGA functionals
- B.1 Local spin density approximation (LSDA) 479
- B.2 Generalized gradient approximation (GGAs) 480
- B.3 GGAs: explicit PBE form 480
 - Select further reading 481

Appendix C Adiabatic approximation
- C.1 General formulation 482
- C.2 Electron–phonon interactions 484
 - Select further reading 484
 - Exercises 484

Appendix D Response functions and Green’s functions
- D.1 Static response functions 485
- D.2 Response functions in self-consistent field theories 486
- D.3 Dynamic response and Kramers–Kronig relations 487
- D.4 Green’s functions 489
 - Select further reading 491
 - Exercises 491

Appendix E Dielectric functions and optical properties
- E.1 Electromagnetic waves in matter 492
- E.2 Conductivity and dielectric tensors 494
- E.3 The f sum rule 494
- E.4 Scalar longitudinal dielectric functions 495
- E.5 Tensor transverse dielectric functions 496
- E.6 Lattice contributions to dielectric response 496
 - Select further reading 497
 - Exercises 498

Appendix F Coulomb interactions in extended systems
- F.1 Basic issues 499
- F.2 Point charges in a background: Ewald sums 500
- F.3 Smeared nuclei or ions 505
- F.4 Energy relative to neutral atoms 506
<table>
<thead>
<tr>
<th>Appendix</th>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>Stress from electronic structure</td>
<td>512</td>
</tr>
<tr>
<td>G.1</td>
<td>Macroscopic stress and strain</td>
<td>512</td>
</tr>
<tr>
<td>G.2</td>
<td>Stress from two-body pair-wise forces</td>
<td>514</td>
</tr>
<tr>
<td>G.3</td>
<td>Expressions in Fourier components</td>
<td>515</td>
</tr>
<tr>
<td>G.4</td>
<td>Internal strain</td>
<td>516</td>
</tr>
<tr>
<td></td>
<td>Select further reading</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td>517</td>
</tr>
<tr>
<td></td>
<td></td>
<td>518</td>
</tr>
<tr>
<td>H</td>
<td>Energy and stress densities</td>
<td>519</td>
</tr>
<tr>
<td>H.1</td>
<td>Energy density</td>
<td>520</td>
</tr>
<tr>
<td>H.2</td>
<td>Stress density</td>
<td>523</td>
</tr>
<tr>
<td>H.3</td>
<td>Applications</td>
<td>524</td>
</tr>
<tr>
<td></td>
<td>Select further reading</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td>527</td>
</tr>
<tr>
<td></td>
<td></td>
<td>527</td>
</tr>
<tr>
<td>I</td>
<td>Alternative force expressions</td>
<td>530</td>
</tr>
<tr>
<td>I.1</td>
<td>Variational freedom and forces</td>
<td></td>
</tr>
<tr>
<td>I.2</td>
<td>Energy differences</td>
<td>532</td>
</tr>
<tr>
<td>I.3</td>
<td>Pressure</td>
<td>532</td>
</tr>
<tr>
<td>I.4</td>
<td>Force and stress</td>
<td>533</td>
</tr>
<tr>
<td>I.5</td>
<td>Force in APW-type methods</td>
<td>534</td>
</tr>
<tr>
<td></td>
<td>Select further reading</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td>534</td>
</tr>
<tr>
<td>J</td>
<td>Scattering and phase shifts</td>
<td>536</td>
</tr>
<tr>
<td>J.1</td>
<td>Scattering and phase shifts for spherical potentials</td>
<td>536</td>
</tr>
<tr>
<td></td>
<td>Select further reading</td>
<td>538</td>
</tr>
<tr>
<td>K</td>
<td>Useful relations and formulas</td>
<td>539</td>
</tr>
<tr>
<td>K.1</td>
<td>Bessel, Neumann, and Hankel functions</td>
<td>539</td>
</tr>
<tr>
<td>K.2</td>
<td>Spherical harmonics and Legendre polynomials</td>
<td>539</td>
</tr>
<tr>
<td>K.3</td>
<td>Real spherical harmonics</td>
<td>540</td>
</tr>
<tr>
<td>K.4</td>
<td>Clebsch–Gordon and Gaunt coefficients</td>
<td>541</td>
</tr>
<tr>
<td>K.5</td>
<td>Chebyshev polynomials</td>
<td>542</td>
</tr>
<tr>
<td>L</td>
<td>Numerical methods</td>
<td>543</td>
</tr>
<tr>
<td></td>
<td>Summary</td>
<td>543</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>L.1</td>
<td>Numerical integration and the Numerov method</td>
<td>543</td>
</tr>
<tr>
<td>L.2</td>
<td>Steepest descent</td>
<td>544</td>
</tr>
<tr>
<td>L.3</td>
<td>Conjugate gradient</td>
<td>545</td>
</tr>
<tr>
<td>L.4</td>
<td>Quasi-Newton–Raphson methods</td>
<td>547</td>
</tr>
<tr>
<td>L.5</td>
<td>Pulay DIIS full-subspace method</td>
<td>547</td>
</tr>
<tr>
<td>L.6</td>
<td>Broyden Jacobian update methods</td>
<td>548</td>
</tr>
<tr>
<td>L.7</td>
<td>Moments, maximum entropy, kernel polynomial method, and random vectors</td>
<td>549</td>
</tr>
<tr>
<td></td>
<td>Select further reading</td>
<td>551</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td>551</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M.1</td>
<td>Why use iterative methods?</td>
<td>553</td>
</tr>
<tr>
<td>M.2</td>
<td>Simple relaxation algorithms</td>
<td>554</td>
</tr>
<tr>
<td>M.3</td>
<td>Preconditioning</td>
<td>555</td>
</tr>
<tr>
<td>M.4</td>
<td>Iterative (Krylov) subspaces</td>
<td>556</td>
</tr>
<tr>
<td>M.5</td>
<td>The Lanczos algorithm and recursion</td>
<td>557</td>
</tr>
<tr>
<td>M.6</td>
<td>Davidson algorithms</td>
<td>559</td>
</tr>
<tr>
<td>M.7</td>
<td>Residual minimization in the subspace – RMM–DIIS</td>
<td>559</td>
</tr>
<tr>
<td>M.8</td>
<td>Solution by minimization of the energy functional</td>
<td>560</td>
</tr>
<tr>
<td>M.9</td>
<td>Comparison/combination of methods: minimization of residual or energy</td>
<td>563</td>
</tr>
<tr>
<td>M.10</td>
<td>Exponential projection in imaginary time</td>
<td>564</td>
</tr>
<tr>
<td>M.11</td>
<td>Algorithmic complexity: transforms and sparse hamiltonians</td>
<td>564</td>
</tr>
<tr>
<td></td>
<td>Select further reading</td>
<td>568</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td>569</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N.1</td>
<td>Calculations of eigenstates: modules common to all methods</td>
<td>570</td>
</tr>
<tr>
<td>N.2</td>
<td>Plane wave empirical pseudopotential method (EPM)</td>
<td>570</td>
</tr>
<tr>
<td>N.3</td>
<td>Slater–Koster tight-binding (TB) method</td>
<td>571</td>
</tr>
<tr>
<td>N.4</td>
<td>Sample input file for TBPW</td>
<td>571</td>
</tr>
<tr>
<td>N.5</td>
<td>Two-center matrix elements: expressions for arbitrary angular momentum l</td>
<td>572</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>Units and conversion factors</td>
<td>575</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>576</td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td>618</td>
</tr>
</tbody>
</table>