ON THE ELECTROMAGNETIC COUPLINGS OF THE \(f \) AND \(\sigma \) MESONS

H. Kleinert
Freie Universität, Berlin

L.P. Staunton
DESY, Hamburg

and

P. H. Weisz
CERN - Geneva

ABSTRACT

We use the Ward identities for the \(\Theta_{\mu\nu} \), \(V_\rho \), \(V_\mu \) vertex and the assumptions of \(f \) and \(\sigma \) meson dominance of the stress-energy momentum tensor \(\Theta_{\mu\nu} \) and vector meson dominance of the electromagnetic currents \(V_\rho \) to present estimates for the electromagnetic couplings of the \(f \) and \(\sigma \) mesons. A comparison is made with results obtained by other methods.

+\) Supported in part by the Deutsche Forschung Gemeinschaft.

*) NATO Fellow.

Ref.TH.1352-CERN
5 July 1971
1. - INTRODUCTION

Recently, considerable effort has been devoted to investigations of the physical consequences of broken dilatation symmetry \(^1\)). The underlying ideas of all methods used so far are abstracted from free or simple interacting field theories \(^2\)-\(^4\)). In particular, such motivated assumptions on the chiral and dimensional structure of the Hamiltonian density \(^2\),\(^3\)) and dimensional properties of the weak and electromagnetic currents \(J_{\mu}\) \(^2\)) lead to Ward identities involving the hadron stress energy momentum tensor \(\Theta_{\mu\nu}\) and the currents \(J_{\mu}\). These can be used to study independently both the high and low energy behaviour of various amplitudes, these regions being then related by dispersion relations. In this paper, we will be mainly interested in the applications of these Ward identities specifically to give information on the electromagnetic couplings of the \(f\) and \(\pi^\pm\) mesons.

The situation concerning \(f\) meson dominance of the traceless part of the stress tensor has been discussed most thoroughly recently by Renner \(^5\),\(^6\)). The results obtained by making the simplest dispersive \(f\) dominance assumptions are in general in agreement with results obtained by Wess and Zumino \(^7\) using an effective Lagrangian appropriately constructed so that the \(f\) meson couples universally to all hadrons "containing" no strange quarks \(^*)\), in the form \(\mathcal{L} \propto f_{\mu\nu} \Theta^{\mu\nu}\). Remarkably this coupling may provide the basis for an explanation \(^5\),\(^6\),\(^8\),\(^9\)) of the experimentally observed s-channel helicity conservation at high energies in various diffractive processes.

However, there is a disturbingly large discrepancy between this theory and Engels and Höhler's \(^10\)) present experimental estimate for the ratio \(R(f) = (g_{\pi\pi}^{(1)})/(g_{\pi\pi}^{(1)})\) ; in fact \(R_{\text{exp}}/R_{\text{theor}} \approx 3\). Here, at least two comments are relevant:

1) - the experimental value \(^10\)) for \(g_{\pi\pi}^{(1)}\) as determined from an analysis of \(N\) backward scattering is probably subject to much larger uncertainties than the quoted 10% error \(^***\)) ;

\(^*)\) Here it is assumed, as it will be in the rest of this paper that the \(f'\) meson does not couple appreciably to hadrons "containing" no strange quarks.

\(^**\) See Refs. \(^1\)-\(^4\)) of Ref. \(^8\).

\(^***\) In fact, H.C. Schäle (Karlsruhe Thesis, 1970) using fixed \(u\) dispersion relations and R. Strauss (Karlsruhe Thesis, 1970) using fixed angle dispersion relations obtain similar estimates for \(g_{\pi\pi}^{(1)}\) but the error quoted are larger \(\sim\) 50%.
2) - $R(f)$ could be brought into agreement with present experiment by introducing subtractions for certain form factors without disturbing the s channel helicity conservation result; however, this would rather spoil the simplicity of the present theoretical picture *).

One should perhaps reserve judgement until the value for $R_{\text{exp}}(f)$ is better known. Renner 6) has also made maximal smoothness assumptions to obtain estimates for the radiative decays of the f meson: he obtains $\Gamma_{f-\rho\gamma} \approx 1.3 \text{ MeV}$; $\Gamma_{f-h\gamma} \approx 7 \text{ KeV}$. The latter result on the two-photon coupling will hopefully be confronted with experimental data from electron electron scattering.

Although the σ meson is experimentally by no means well established, we will assume it to exist with a large mass and width $m_\sigma = 700 \text{ MeV}$, $\Gamma_\sigma = 400 \text{ MeV}$ and to dominate the trace of the energy momentum tensor $\Theta \equiv \Theta^{\mu}_\mu$. In this case, standard assumptions on the nature of chiral and dilatational symmetry breaking force a subtraction **) in the pion matrix element $\langle P(p)|\Theta(0)|\pi(p')\rangle$, although matrix elements $\langle T(p)|\Theta(0)|T(p')\rangle$ (spin average) for other targets T can in principle be unsubtracted 12),13). Again there is a discrepancy between the experimental 10) estimate *** and the simplest theoretical estimate ****) for $R(\sigma) \equiv (g_{\sigma NN}/g_{\sigma NN})$; here

*) Crewther 11) has suggested that scale breaking effects might show up in a subtraction for the tensor form factor F_1 defined in the matrix element

$$\langle P(p)\frac{1}{4} 1|\Theta_{\rho\sigma}(0)|P(p')\rangle = (2p_{\rho} P_{\rho} - J_{\rho\sigma}(q^2/6) F_1(q^2) + J_{\rho\sigma}(q^2) F_2(q^2)$$

using collinear dispersion relations saturated with σ and π poles alone together with other assumptions (whose validities are just as questionable as assuming that F_1 is in fact of unsubtracted form) he obtains estimates

$$F_1(0) = \frac{m_\rho^2 + m_\pi^2}{m_\rho^2 (m_\rho^2 - m_\pi^2)} \approx \frac{2}{2m_\pi^2}$$

and

$$g_{\sigma NN} F_1^{-1} = (1 - \frac{m_\pi^2}{m_\rho^2})$$

Assuming then a once subtracted form for F_1 but the same unsubtracted assumptions for the stress tensor form factors of the nucleon $R(\sigma)$ and $R(\sigma)$ would now agree well; however, $R_{\text{exp}}(f)$ and $R_{\text{theor}}(f)$ would now differ by a factor ≈ 10.

**) This subtraction should not a priori be thought of as being necessary to reproduce a specific high energy behaviour but as being necessary to describe the tails of the higher resonances in the low energy region.

****) For another estimate for $R(\sigma)$ agreeing more with $R(\sigma)$, see Ref. 14).
\(R(\sigma)/R(\tau) \approx 2 \). Note, however, that since \(R(\sigma) \) and \(R(\tau) \) which we have taken come from the same analysis \(^{10}\) of the scattering the present discrepancies with \(R(\sigma) \) and \(R(\tau) \) are correlated \(^{*}\); one may, however, be too optimistic in hoping that after future analyses the experimental values for \(R(\sigma) \) and \(R(\tau) \) will be brought into simultaneous agreement with the corresponding theoretical values. On the other hand, making definite assumptions on the nature of chiral and dimensional breaking contained in the energy density, an absolute prediction for \(e_{\sigma \pi \pi} \) is obtained \(^{12},^{13}\) ; in particular the assumptions of \((3,3^*) + (3^*,3)\) breaking (with \(c \) given by either of the favourite values \(c \approx -1.25 \) \(^{15}\) or \(c \approx -0.25 \) \(^{16}\)) and only a c number \(\delta \) \(^{17}\) are consistent with a large \(\Gamma_{\sigma} \approx 400 \text{ MeV} \). The couplings \(e_{\sigma A \pi} \) and \(e_{\sigma AA} \) have also been considered \(^{13}\) using the familiar hard meson methods \(^{19}\), however, here the estimate for \(e_{\sigma A \pi} \) depends critically on what one considers the natural smoothness assumption to make \(^{**}\).

In this paper our primary aim is to augment the list of estimates for couplings obtained by making smoothness assumptions on the \(\theta V_\mu V_\mu \) vertex. In order to give a more coherent analysis in Section 2, we also consider the \(\theta_\mu V_\mu V_\mu \) vertex and discuss the associated \(f \) couplings. We show that a certain set of smoothness assumptions reproduce the vertex of Renner \(^{6}\). However, it is noteworthy that this vertex does not coincide with that obtained from the effective Lagrangian of Wess and Zumino \(^{7}\) containing minimal \(f \) coupling. Nevertheless the two vertices reproduce the same on-shell electromagnetic coupling constants \(e_{f V_\mu V_\mu} \) and \(e_{f \gamma \gamma} \) and have the same properties with respect to a channel helicity conservation \(^{6}\).

The results obtained for the \(\sigma \) couplings by making maximal smoothness assumptions are very simply stated. They are: (1) the s wave \(\sigma VV \) coupling is proportional to \((d_s - 1) \) where \(d_s \) is the dimension of the spatial components of the electromagnetic current; (2) the d wave \(\sigma VV \) coupling vanishes; (3) \(e_{\sigma Vf} = 0 \), and (4) \(e_{\sigma VV} = 0 \). We refer the reader to Section 4 for a discussion of the consequences of these results and their comparison with results obtained by other methods.

\(^{*}\) As Renner \(^{5}\) has remarked to reproduce the structure of the data, a destructive interference between \(\sigma \) and \(f \) poles is needed and the fit may not be stable against addition of further contributions.

\(^{**}\) The simplest set of smoothness assumptions including the assumption of absence of a d wave \(\sigma AA \) coupling (which corresponds to the structure of the simplest effective Lagrangian \(^{7}\)) lead to \(e_{\sigma A \pi f} \) \((d_s - 3) \), when \(d_s = 1 \) the ratio \(e_{\sigma A \pi f}/e_{\sigma \pi \pi} \) is the same as that given by Gilman and Harari \(^{20}\). On the other hand, allowing possible non-smooth behaviour but requiring the \(F_1 \) form factor defined in \(<\sigma | A_\mu | \pi > \) to be unsubtracted one obtains (independently of \(d_s \)) approximately the Gilman-Harari value for \(e_{\sigma A \pi}/e_{\sigma \pi \pi} \) provided that one assumes that \(F_1(t) \) is at most once subtracted and \(F_1(0) \ll 1/m_\pi^2 \) \(^{18}\).
2. WARD IDENTITIES AND π MESON COUPLINGS

The relevant object for our study is a covariantization $T^*_{\mu\nu\rho\lambda}$ of the three-point function

$$
T^*_{\mu\nu\rho\lambda}(p, k) = \int \mathcal{D}\Theta_{\mu\nu\rho\lambda}(0, 1) \Theta_{\mu\nu\rho\lambda}(0, 1) \langle 0 | T \Theta_{\mu\nu\rho\lambda}(0) \bar{V}_\rho(x) V_\lambda(y) | 0 \rangle
$$

(1)

where $V_\rho(x)$ are the conserved vector currents $\alpha = 3$ or 8. The most elegant way to obtain the Ward identities is by considering the variation of the transition amplitude with respect to variations of external electromagnetic and gravitational fields. This has been done by Wess and Zumino \(^7\); here we just state the results and refer the reader to Ref. \(^7\) for a full derivation.

First define the reduced vertex $\Gamma_{\mu\nu\rho\lambda}$ for a particular $SU(3)$ index α which we drop in the following,

$$
\Gamma_{\mu\nu\rho\lambda}(p, k) = \Delta^*(p) \Delta^*(k) T^*_{\mu\nu\rho\lambda}(p, k) \delta^*_{\rho\lambda}
$$

(2)

where $\Delta(p)$ is defined in terms of the conserved propagator

$$
\Delta(p) J_{\rho\lambda}(p) = \Delta^*(p) J_{\rho\lambda}(p) = -i \int \mathcal{D}x \mathcal{D}y \mathcal{D}z \langle 0 | T V_\rho(x) V_\lambda(y) V_\mu(z) | 0 \rangle
$$

(3)

Here $J_{\rho\lambda}$ denotes the spin one projection

$$
J_{\rho\lambda}(p) = H_{\rho\lambda}(p, p)
$$

(4)

with

$$
H_{\rho\lambda}(p, k) \equiv \epsilon_{\rho\lambda} - k_\rho \epsilon_{\lambda k}
$$

The factor $\delta^*_{\rho\lambda}$ in (2) denotes the coupling strength of the dominant vector meson to V^*.

$$
\delta^*_{\rho\lambda} m^{-2} = \lim_{p \to m_{\rho\lambda}^2} \frac{\partial}{\partial p^2} \Delta^*(p)
$$

(5)

\[^{*}\] $\langle 0 | V_\rho(0) | V, p, \lambda, m_\nu \rangle = \epsilon_{\rho\lambda}(p, \lambda) m_\nu^2 / \gamma_\nu$.

*) $\langle 0 | V_\rho(0) | V, p, \lambda, m_\nu \rangle = \epsilon_{\rho\lambda}(p, \lambda) m_\nu^2 / \gamma_\nu$.

Then properties of $\Gamma_{\mu \nu \rho \alpha}$ are the following 7:

A) $\Gamma_{\mu \nu \rho \alpha}$ has no pseudotensor components;

B) Symmetry: $\Gamma_{\mu \nu \rho \alpha}(p, k) = \Gamma_{\mu \nu \rho \alpha}(k, p)$

C) Crossing symmetry: $\Gamma_{\mu \nu \rho \alpha}(p, k) = \Gamma_{\mu \nu \rho \alpha}(k, p)$

D) Gauge invariance: $p^\rho \Gamma_{\mu \nu \rho \alpha}(p, k) = 0 = \Gamma_{\mu \nu \rho \alpha}(p, k) \mathbb{K}^\rho$

E) Covariance: $\Gamma_{\mu \nu \rho \alpha}$ satisfies the Ward identity ($q = p + k$)

$$\nabla_\nu q^\mu \Gamma_{\mu \nu \rho \alpha}(p, k) = - (g_{\alpha \nu} k^\rho - g^{\rho \nu} k_\alpha) J_{\mu \rho}(p) \Delta^\nu(k)$$

$$- (g_{\rho \nu} p^\rho - g^{\rho \nu} p_\rho) J_{\alpha \mu}(k) \Delta^\nu(p)$$

The properties A) to D) leave $\Gamma_{\mu \nu \rho \alpha}(p, k)$ expressible in terms of 13 form factors of definite crossing properties and the Ward identity E) supplies six rel-
relations between these. To obtain estimates for the couplings of the f meson, it is ne-
necessary to invoke smoothness assumptions. Maximal smoothness assumptions directly on
the vertex $\Gamma_{\mu \nu \rho \alpha}$ lead to Renner's relation 6 ($\Sigma = p - k$, $\Sigma^\rho = 0$, $\Sigma^{\mu \nu} = \Sigma^{\nu \mu}$, $q^\mu c_{\mu \nu} = 0$, $c_\rho = c_\nu = 0$)

$$\lim_{q \to 0} \left[(1 - \frac{q^2}{m_f^2}) \epsilon^{\alpha \nu}(q) \epsilon^\rho(p) \epsilon^\gamma(k) \Gamma_{\mu \nu \rho \alpha}(p, k) \right]$$

$$= - \frac{1}{2} \epsilon^{\alpha \nu}(q) \epsilon^\rho(p) \epsilon^\gamma(k) \left\{ \Sigma_{\mu} g_{\nu \gamma} - \Sigma_{\nu} g_{\mu \gamma} - \Sigma_{\gamma} g_{\mu \nu} + \Sigma_{\mu} g_{\nu \gamma} + \Sigma_{\nu} g_{\mu \gamma} - 2 \Sigma_{\gamma}(g_{\mu \nu} + g_{\nu \gamma}) \right\}$$

where no artirary parameters appear. The full analysis involves much tedious algebra
and is outlined in the Appendix.

The relation (6) leads to a fVV coupling given by the effective Lagrangian

$$L_{fVV} = - \frac{g^2}{m_f^2} f_{\mu \nu} V^\mu V^\nu V^\nu$$

(where $V_{\nu \rho} = \partial_{\nu} V_{\rho} - \partial_{\rho} V_{\nu}$) which differs from the
universal coupling *).

$$L_{fVV} = \frac{g_f}{m_f} f_{\mu \nu} \Theta_{\nu} = - \frac{g_f}{m_f} f_{\mu \nu} (V^\rho V^\nu - m_f^2 V^\mu V^\nu)$$

* There should be no anomalies 21 in Eqs. D) and E) since the invariances from which they follow must be exact.

** One can reproduce Renner's vertex within the effective Lagrangian approach 7, how-
ever, this would involve the addition of non-minimal interaction terms for the f
meson.
The different couplings, however, have the same property of conserving a channel helicity. In addition both relation (6) and the Lagrangian of Wess and Zumino yield the same estimates for the radiative decay widths

\[\Gamma_{\pi^+ \pi^-} = \left(\frac{\alpha}{\pi} \right)^2 \frac{m_\pi}{\pi} \left[\left(1 + \frac{m_\pi^2}{m_\rho^2} \right)^2 \right] 0.29 \text{ MeV} \]

(8)

and *)

\[\Gamma_{\pi^- \pi^0} = \left(\frac{\alpha}{\pi} \right)^2 \frac{m_\pi}{\pi} \left[\left(1 + \frac{m_\pi^2}{m_\rho^2} \right)^2 \right] 43 \text{ keV} \]

(9)

where \(\sigma_f \) is defined in the coupling of the \(f \) meson to the energy momentum tensor

\[\langle 01 | \Theta_{\mu
\nu} (0) | f, q, \lambda \rangle = \epsilon_{\mu
\nu\lambda \lambda} \sigma_f m_f^3 \]

(10)

With \(\sigma_f \) estimated from the \(f \) width and the universal coupling

\[L_f \pi \pi = \sigma_f m_f^3 \epsilon_{\mu
\nu} \Theta_{\pi \pi}^{\mu\nu} = \sigma_f m_f^3 f_{\mu
\nu} \partial^\mu \pi \partial^\nu \pi \]

(11)

one obtains **), 5)

\[\sigma_f^2 / 4\pi = 10.8 \]

(12)

Then using \(\sigma_\rho^2 / 4\pi = 2.5 \) and \(\sigma_\omega^2 / 4\pi = 2.2 \) one obtains the following estimates for the widths \(\Gamma_{\pi^+ \pi^-} = 1.3 \text{ MeV} \) and \(\Gamma_{\pi^- \pi^0} = 7 \text{ keV} \). The latter result agrees well with an estimate of \(\Gamma_{\pi^- \pi^0} = 5.7 \text{ MeV} \) from finite energy sum rules; with this coupling the \(f \) can be produced in \(e^+ e^- \) collisions with a cross-section of approximately \(5 \times 10^{-34} \text{ cm}^2 \) at \(\sqrt{s} = 6 \text{ GeV} \). Hopefully these estimates will soon be confronted with experiment.

*) We have included only \(\omega, \rho \) contributions and have approximated \(m_\rho \approx m_\omega \)

\[L_{\pi^+ \pi^-} = \frac{g_{\pi \pi \pi} m_\pi}{\pi} f_{\mu
\nu} \partial^\mu \pi \partial^\nu \pi \]

gives

\[\Gamma_{\pi^+ \pi^-} = \left(\frac{\alpha}{\pi} \right)^2 \frac{m_\pi}{\pi} \left[\left(1 - \frac{m_\pi^2}{m_\rho^2} \right)^2 \left(1 + \frac{m_\pi^2}{m_\rho^2} \right)^2 \right] \]

and

\[L_{\pi^- \pi^0} = \frac{g_{\pi \pi \pi \rho}}{\pi} f_{\mu
\nu} \partial^\mu \pi \partial^\nu \pi \rho \]

gives

\[\Gamma_{\pi^- \pi^0} = \left(\frac{\alpha^2 \pi}{\pi} \right) \frac{g_{\pi \pi \pi \rho}}{40} \]

***)

\[\Gamma_{\pi^- \pi^0} = \frac{\alpha^2}{4\pi} \frac{2}{5} \frac{g_{\pi \pi \pi \rho}}{\pi} = 150 \text{ MeV} \]
3. - Trace identity and maximal smoothness assumptions

The relevant object for a study of the electromagnetic couplings of the σ meson is the conserved covariantization $\tau_{\rho\alpha}^{*}(p,k)$ of the three-point function

$$\tau_{\rho\alpha}(p,k) = \int e^{i\left(p \cdot x + k \cdot y\right)} \Theta(0) \nu_{\rho}(x) \nu_{\alpha}(y) \, dx \, dy \tag{13}$$

It has been shown \footnote{1} that $\tau_{\rho\alpha}^{*}(p,k)$ is indeed simply related to the conserved covariantization $\tau_{\rho\nu\rho\alpha}(p,k)$ by the trace identity \footnote{1}: \footnote{2}

$$\tau_{\rho\alpha}^{*}(p,k) = \tau_{\rho\alpha}(p,k) \tag{14}$$

One can now deduce, for the reduced vertex

$$\Gamma_{\rho\alpha}(p,k) = \Delta^{-1}(p) \Delta^{-1}(k) \Gamma_{\rho\alpha}^{*}(p,k) \Delta^{-1}(p) \tag{15}$$

the low energy theorem

$$\frac{\Delta^{-2}}{\pi^2} \Gamma_{\rho\alpha}(p,k) = 2 \int \frac{\Delta^{-1}(p)}{p^2} \frac{\partial}{\partial p^2} \Delta^{-1}(p) \tag{16}$$

by using the Ward identity \footnote{2} and the trace identity \footnote{1}.

Now expressing $\Gamma_{\rho\alpha}(p,k)$ in terms of its two independent form factors \footnote{2}: \footnote{3}

$$\Gamma_{\rho\alpha}(p,k) = W_1 H_{\rho\alpha}(p,k) + \frac{W_2}{3} J_{\rho\alpha}(p) J_{\rho\alpha}(k) \tag{17}$$

we have

$$W_1(0, p^2, p^2) = \frac{p^2}{m^2} W_2(0, p^2, p^2) = 2 \frac{\Delta^{-2}}{\pi^2} \frac{\partial}{\partial p^2} \Delta^{-1}(p) \tag{18}$$

which gives the rigorous result

$$W_1(0,0,0) = 0 \tag{19}$$

\footnote{1} Equation (14) could have anomalies \footnote{2}, however, we ignore this possibility.

\footnote{2} Note $W_1 = W_1(q^2, p^2, k^2) = W_1(q^2, k^2, p^2)$
To obtain estimates for the σ couplings one now has to make smoothness assumptions.

1) The most naive smoothness assumption would now be to take $W_{1}(0, p^{2}, k^{2})$ as constants for small p^{2}, k^{2}. This would only be consistent in so far as $\Delta(p)$ is vector meson pole dominated

$$\Delta^{-1}(p) = \frac{\alpha_{s}}{m_{0}^{2}} (p^{2} - m_{0}^{2})$$ \hspace{1cm} (20)

Then making a σ pole dominance assumption one would obtain

$$W_{1} = 0$$
$$W_{2} = \frac{m_{0}^{2}}{(q^{2} - m_{0}^{2})}$$ \hspace{1cm} (21)

2) On the other hand, one may prefer to recover the results of effective Lagrangian models incorporating vector meson dominance of the electromagnetic currents and dominance of Θ and where the dimension of the spatial component of the electromagnetic current has a fixed dimension d_{ϕ}.*

$$i \left[\int d^{4}x \times^{a} \Theta_{\mu \alpha}(x), V_{i}(y) \right]_{x_{-} = \gamma_{0}} = (q_{\alpha} + d_{\phi}) V_{i}(y)$$ \hspace{1cm} (22)

In this case smoothness assumptions must be made not for the gauge invariant covariantization $T_{\rho \lambda}^{\alpha}$, but rather for the covariantization $T_{\rho \lambda}^{\alpha *}$ which has the same spatial components as $T_{\rho \lambda}$ defined in (13). The two covariantizations differ by sea-gulls containing only single poles **.

$$T_{\rho \lambda}^{\alpha *}(p, k) = T_{\rho \lambda}^{\alpha *}(p, k) - g_{\rho \lambda} \Delta_{\Theta \phi}(p^{2} + (d_{\phi} - 3) \left[\alpha_{s}^{\rho \lambda}(p^{2}) + g_{\rho \lambda}(p^{2}) \right] - S(p)$$ \hspace{1cm} (23)

where $S(y)$ is the operator appearing in the commutator ***.

$$i \left[V_{\alpha}(x), V_{\alpha}(y) \right]_{x_{-} = \gamma_{0}} = S(y) g_{\alpha \lambda} \delta^{\lambda}_{\alpha} \delta^{3}(x - y)$$ \hspace{1cm} (24)

and

$$\Delta_{\Theta \phi}(q) = -i \int e^{-i qx} \langle 0 | \Theta(x) \Theta(0) | 0 \rangle$$ \hspace{1cm} (25)

*) One can also prove 23)

$$i \left[\Theta(x), V_{\alpha}(y) \right]_{x_{-} = \gamma_{0}} = (3 - d_{\phi}) V_{\alpha}(x) \delta^{3}(x - y)$$

+ higher order S.T. vanishing on integration over x.

**) For a derivation of this relation, see Ref. 18).

*** In cases where the equal time commutator is divergent we consider the derivation as formal only.
\[S = \langle 0 | S(0) | 0 \rangle \quad (26) \]

The covariantization \(T_{\rho a}^{**}(p, k) \) satisfies the Ward identity
\[p^\mu T_{\rho a}^{**}(p, k) = -p_\lambda \Delta_{\Theta S}(q) + (d_3 - 3) p^\lambda \Delta_{\rho a}^{**}(k) \quad (27) \]

and the low energy theorem \(^*\)
\[T_{\rho a}^{**}(p, k) = (2d_3 - 4 - p \cdot \frac{3}{3} p) \Delta_{\rho a}^{**}(k) \quad (28) \]

where \(\Delta_{\rho a}^{**}(p) \) is the non-conserved propagator
\[\Delta_{\rho a}^{**}(k) = \Delta_{\rho a}(p) - S g_{\rho a} \quad (29) \]

In the following we consider dominance of matrix elements of \(\nu^6 \) and \(\nu^8 \) by one vector meson in each case although a similar analysis can be carried out for the case of two resonances. We first define the vertex \(\Gamma_{xT}^{**}(p, k) \) by
\[T_{\rho a}^{**}(p, k) = \Delta_{\rho a}^{**}(p) \Delta_{xT}^{**}(k) \Gamma_{xT}^{**}(p, k) \frac{1}{q^2 m_\nu \bar{m}_\nu} \quad (30) \]

Then assuming in the low energy region \(^**\)

(i) \[\Delta_{\Theta S}(q) = -\frac{\Delta_{\Theta S}(0) m_\nu^2}{q^2 - m_\nu^2} \]

(ii) \[\Delta_{\rho a}^{**}(p) = \frac{\bar{m}_\nu}{\bar{m}_\nu} \frac{p \cdot p_a - m_\nu^2 g_{\rho a}}{p^2 - m_\nu^2} \]

(iii) that \(\Gamma_{xT}^{**}(p, k) \) is well approximated by a tensor containing only up to quadratic terms in the momenta, we find the result, expressed in terms of \(\bar{w}_1, \bar{w}_2 \)

\(^*\) Since we expect the high energy behaviour of the propagator to be determined by \(d_3 \), we expect that one can make arguments for the neglect of \(T_{\rho a}^{**}(p, k) \) in \((28) \) for high spacelike \(p^2 \).

\(^**\) Note \(\Delta_{\Theta S}(0) = (d_3 - 1)S \).
\[w_1 = 0 \]
\[w_2 = \frac{2m_e^2 - q^2(3 - d_s)}{q^2 - m_\sigma^2} \]
(31)

Equation (31) implies that \(\Gamma_{\mu\nu}(p,k) \) is smoothest when \(d_s = 3 \) and in this case the result agrees with (21). The result (31) is that obtained first by Wess and Zumino 7) in the framework of effective Lagrangians.

4. RESULTS AND CONSEQUENCES FOR \(\sigma \) COUPLINGS

In this Section we discuss the consequences of the results (19), (21) and (31), and make a comparison with results obtained by other methods.

A) Independently of any assumption on \(\Delta(p) \), the result (19) implies that in any Lagrangian model satisfying the trace identity \(^{14}\) and in which \(\Theta \) is a good interpolating field for \(\sigma \), the contribution of the \(\sigma \) exchange Feynman diagram to the invariant amplitudes of Compton scattering on any target vanishes in the forward direction.

B) \(\sigma VV \) couplings: the on-shell coupling constants defined by the effective Lagrangian

\[\mathcal{L}_{\sigma VV} = g_{\sigma VV} \frac{m_v}{2} \sigma \nabla_v \nabla_v + h_{\sigma VV} \frac{1}{m_v} \sigma \partial_\mu \nabla_\nu \nabla^\nu \nabla_\nu \]
(32)

are given by

\[h_{\sigma VV} = 0 \]
(33)

for both cases (21) or (31); and by

\[g_{\sigma VV} = (1 - d_s) \frac{m_v}{m_\sigma} \sigma \]
(34a)

or

\[g_{\sigma VV} = -2 \frac{m_v}{m_\sigma} \sigma \]
(34b)

for (21) and (31) respectively where \(\gamma_\sigma \) defines the strength of the \(\sigma \) meson to \(\epsilon_{\mu\nu} \),

\[\epsilon_{\mu\nu}(0) = \frac{2}{3} \sigma^{-1} m_\sigma J_{\mu\nu}(q) \]
(35)
We recall that by making the standard assumption that the chiral breaker in

\(\theta \) is a Lorentz scalar \(^{15}\) of dimension \(d \) \(^{\text{*}}\) and assuming also maximal smoothness of the \(\phi \Delta \Delta \) vertex one obtains \(^{**,12,13}\)

\[
\sigma_{\Delta \Delta} = \frac{\sigma_0}{1 + (d-2)\frac{m^2_\sigma}{m^2}}
\]

(36)

Note that the results \((34a)\) and \((34b)\) agree for \(d_\phi = 3 \). There is in fact now quite an accumulation of indirect evidence supporting the quark model value \(d_\phi = 3 \), these being (i) the phenomenon of scaling in deep inelastic lepton scattering and its explanation using operator product expansions on the light cone \(^{24}\); (ii) accepting naive arguments \(^{25}\) the total electron positron annihilation cross-section should go as \(s^{d_\phi - 5} \); the preliminary data \(^{26}\) favour \(d_\phi = 3 \) (although it is by no means clear that the asymptotic region has been reached); (iii) the longitudinal to transverse ratio in deep inelastic electron proton scattering favours quark model commutators \(^{27}\); (iv) present data is consistent with these being only a \(c \) number \(s \) in \(\theta \) \(^{17}\) - \(d_\phi \neq 3 \) would require the presence of a \(q \) number \(s \).

0) - \(\sigma \nu \nu \) coupling: defining the on-shell \(\sigma \nu \nu \) coupling constant \(\sigma_{\nu \nu} \) by

\[
\mathcal{L}_{\nu \nu} = \bar{\nu} \sigma \nu \nu \sigma \nu \nu \gamma^\mu \nu
\]

(37)

we see from \((21)\) and/or \((31)\) that maximal smoothness implies

\[
\sigma_{\nu \nu} = 0
\]

(38)

as was first observed by Ellis \(^{12}\) using a Lagrangian model. This would then imply that \(\sigma \) production in \(e^+e^- \) collisions is not enhanced by going to a pole \(s \approx m^2_\nu \) as was hoped for by Creutz and Einhorn \(^{**,20}\).

\(^{*}\) Hopefully \(d \) can eventually be measured in deep inelastic lepton scattering. See, e.g., Fritzsch and Geil-Mann \(^{1}\).

\(^{**}\) \(\mathcal{L}_{\Delta \Delta} = \frac{1}{2} \sigma \sigma \Delta \Delta \sigma \sigma \Delta \Delta \) : \(\Gamma_{\sigma \Delta \Delta} = \frac{3}{4} \frac{\sigma \sigma \Delta \Delta}{m \Delta \Delta} \) \(m \Delta \Delta = 400 \text{ MeV} \)

with \(m_\sigma = 400 \text{ MeV} \) gives \(\sigma_0 \approx \sigma_{\Delta \Delta} = \frac{m_\sigma}{m_\Delta \Delta} \approx \gamma_0 \)

\(^{***}\) Creutz and Einhorn in fact proposed going to the \(\phi \) pole (so that the \(\phi \) would be emitted with sufficiently high momentum); however, as these authors noted in their original paper one might have an independent suppression in this case if \(\sigma \) does not couple to particles containing no non-strange quarks.
D) - \(\sigma \bar{\sigma} \) coupling: defining the on-shell \(\sigma \bar{\sigma} \) coupling constant by the effective Lagrangian \(^*)

\[
L_{\sigma \bar{\sigma}} = e^2 g_{\sigma \bar{\sigma}} \bar{\sigma} m^2 \sigma F_{\mu \nu} F^{\mu \nu}
\]

(39)

one obtains, again from the smoothness results (21) and/or (31)

\[
\sigma \bar{\sigma} = 0
\]

(40)

Note that both the results (38) and (40) differ considerably from those obtained by a naive application of vector meson dominance in the frame of the decaying \(\sigma \) to (34) \(^**) \[unless \(\delta_s = 1 \) in case (34a)].

The result (40) also differs from the estimate of \(\sigma \bar{\sigma} \bar{\sigma} \sigma \) obtained by Schremp, Schremp and Walsh \(^22\) using finite energy sum rules for pion Compton scattering, which is equivalent to

\[
\delta_{\sigma \bar{\sigma} \bar{\sigma} \sigma} \approx 4
\]

(41)

The estimate (41) has also been derived elsewhere in the literature, albeit on the basis of quite dubious assumptions \(^***)

\(^*) \quad \Gamma_{\sigma \bar{\sigma}} = \frac{e^+ m_\sigma}{4} \frac{g_{\sigma \bar{\sigma}}^2}{4\pi}

\(^**) \quad One would in fact obtain \(\epsilon_{\sigma \bar{\sigma} \bar{\sigma} \sigma} \approx (1/\delta_0^2) \bar{\sigma} (1 - \delta_3)^2 m^2 \). This agrees well with (41) for \(\delta_s = 3 \), however, this agreement is probably coincidental and we cannot easily justify the naive vector meson dominance assumption within our Ward identity approach.

\(^***) \quad There has been an attempt by Sarker \(^29\) to estimate \(\sigma \bar{\sigma} \bar{\sigma} \bar{\sigma} \sigma \) by using a superconvergent sum rule for the helicity flip amplitude \(M_{1,-1} \) for pion Compton scattering. Apart from a mistake in the \(A_2 \) graph (which should read

\[
M_{1,-1} = e^2 g_{\sigma \bar{\sigma} \bar{\sigma} \sigma} \left[\frac{3(s-u)^2}{2s} + \frac{4st}{s} + s \leftrightarrow u \right]
\]

and which in turn drastically changes his bound \(\epsilon_{\sigma \bar{\sigma} \bar{\sigma} \sigma} \epsilon_{\bar{\sigma} \sigma} \lesssim -1 \pm 0.3 \) obtained by saturating the sum rule with \(\sigma \) and higher resonances to \(\epsilon_{\sigma \bar{\sigma} \bar{\sigma} \sigma} \epsilon_{\bar{\sigma} \sigma} \lesssim \lesssim -2.3 \pm ? \) we do not consider the assumption of superconvergence of \(M_{1,-1} \) justified. Brodsky et al. \(^30\) point out two similar ways of reproducing the estimate (41) both equally unconvincing. The first is to saturate Sarker's sum rule with the \(\sigma \) alone ; and the second is to require that the forward differential cross-section for \(\sigma \rightarrow \pi^+ \pi^- \) falls faster at high energy than either the pion Born term contribution or the \(\sigma \) contribution alone.
A non-vanishing coupling constant $g_{\sigma\nu\nu}$ can in principle be obtained in the Ward identity approach. To do this we have to admit, however, non-maximal smoothness behaviour for the $\Gamma_{\mu\nu}^{**}$ vertex. The simplest theory that can be done perhaps is to make the same pole dominance assumptions as before but now allow general fourth order momentum dependence in $\Gamma_{\mu\nu}^{**}$. Then one still has W_2 as given in (31) but an arbitrary parameter appears in W_1

$$W_1 = \frac{g^2}{q^2 - m_0^2}$$ \hspace{1cm} (42)

allowing a non-vanishing $g_{\sigma\nu\nu}$ and $g_{\sigma\nu\pi}$

$$g_{\sigma\nu\nu} = \frac{1}{2} \frac{\partial}{\partial \rho} \sigma_\nu$$ \hspace{1cm} (43)

and including just ω, ρ contributions

$$g_{\sigma\nu\pi} = \frac{1}{2} \sigma_\nu \left(\frac{1}{\rho^2} \sigma_\rho + \frac{1}{\omega^2} \sigma_\omega \right)$$ \hspace{1cm} (44)

If we make in addition a quark model type of assumption $\frac{\sigma_\nu}{\rho} = \frac{\rho}{\bar{\rho}}$ for all ν, we obtain the rough estimates (neglecting mixing effects and σ_ρ^{-2} with respect to σ_{π}^{-2})

$$g_{\sigma\nu\pi} = \frac{\rho}{\bar{\rho}} g_{\sigma\nu\rho}$$ \hspace{1cm} (45)

Then the Schrempp et al. estimate (41) for $g_{\sigma\nu\rho}$ would give, together with (45) and using $g_{\sigma\nu\pi} \sim \frac{\rho}{\bar{\rho}}$

$$g_{\sigma\nu\pi} = -2 g_{\sigma\nu\rho} / \rho$$ \hspace{1cm} (46)

This gives the same order of magnitude for the coupling constant $g_{\sigma\rho\rho}$ as assumed by Creutz and Einhorn 28).

The simplest way to distinguish between the two results (40) and (41) is to observe the cross-section of Compton scattering on pions when the two pions are in the neighbourhood of the σ mass. According to the maximal smoothness result (40) σ should not be produced at all. On the other hand the large estimate for the $\sigma\nu\pi$ coupling (41) should suffice to lift the σ out of the background.
At present there are two feasible experiments which can measure $\sigma_{ee - ee}$:

1) collisions of e^+e^- at small angles producing two pions $^*)$;
2) photoproduction of two pions on a high Z nucleus at small momentum transfer.

CONCLUSION

The theoretical situation concerning the coupling constants $g_{\gamma\gamma}$ and $g_{\gamma\gamma\gamma}$ is by no means clear. The most natural assumption of maximal smoothness within the Ward identity approach leads to a vanishing of these coupling constants — in which case σ will be absent in most electromagnetic reactions where one could hope best to see it. It remains for experiment to decide how good the maximal smoothness assumption for the $\gamma\gamma\gamma$ vertex really is.

ACKNOWLEDGEMENTS

We wish to thank J.S. Bell, J. Ellis, B. Renner, T.F. Walsh and B. Zumino for helpful discussions. We especially wish to thank J. Wess and B. Zumino for informing us of their results before publication.

*) A width $\Gamma_{\gamma\gamma\gamma} = 20$ KeV leads to a cross-section $\sigma_{ee - ee} = 2.7 \times 10^{-33}$ cm2 at $\sqrt{s} = 6$ GeV.
APPENDIX - THE VERTEX $\Gamma^{\mu \nu \delta \rho}$

The vertex $\Gamma^{\mu \nu \delta \rho}$ (p,k) satisfying properties A) to D) is given in terms of 13 form factors of definite crossing properties which we first write in such a form that each form factor multiplies a gauge invariant quantity

$$
\Gamma^{\mu \nu \delta \rho} (p,k) = H_{\mu \nu} (p,k) \left[\Theta_1 g_{\mu \nu} + \frac{\Theta_2}{\nu^2} p_{\mu} p_{\nu} + \frac{\Theta_3}{\nu^2} k_{\mu} k_{\nu} \right] \\
+ J_{\mu \nu} (p) J^\tau (k) g_{\mu \nu} \Theta_4 \nu^2 \\
+ \frac{1}{2} \left[\begin{array}{l}
\frac{\Theta_5}{\nu^2} p_{\mu} J_{\mu \nu} (p) H_{\tau \lambda} (p,k) + \frac{\Theta_6}{\nu^2} k_{\mu} J_{\mu \nu} (k) p^\tau H_{\tau \lambda} (p,k) \\
+ \frac{\Theta_7}{\nu^2} J_{\mu \nu} (p) H_{\mu \nu} (p,k) + \frac{\Theta_8}{\nu^2} J_{\mu \nu} (k) H_{\mu \nu} (p,k) \\
+ \frac{\Theta_9}{\nu^2} H_{\mu \nu} (p,k) H_{\mu \nu} (p,k) + \frac{\Theta_{10}}{\nu^2} J_{\mu \nu} (p) J_{\mu \nu} (k) \\
+ \frac{\Theta_{11}}{\nu^2} p_{\mu} (p_{\tau} g_{\rho \tau} - p_{\tau} g_{\rho \tau}) J^\tau (k) + \frac{\Theta_{12}}{\nu^2} k_{\mu} (k_{\tau} g_{\rho \tau} - k_{\tau} g_{\rho \tau}) J^\tau (p) \\
+ \Theta_{13} (p_{\tau} g_{\rho \tau} p_{\mu} - g_{\rho \tau} p_{\mu} p_{\nu} + k_{\mu} g_{\rho \tau} g_{\rho \tau}) \end{array} \right] \\
+ \left\{ \lambda \leftrightarrow \nu \right\}
$$

(\text{A.1})

where

$$
\Theta_1 = \Theta_1 (q^2, p^2, k^2) ; \quad \Theta_2 (q^2, p^2, k^2) = \Theta_3 (q^2, k^2, p^2)
$$

and

$$
\Theta_1 = \Theta_1 \quad \text{for } \quad i = 1, 3, 6, 7, 9
$$

(\text{A.2})

Define

$$
\Theta_1^\pm = \frac{1}{2} \left(\Theta_1 \pm \Theta_1 \right)
$$

(\text{A.3})

The Ward identity can now be shown to give six independent relations among the Θ_1^\pm.

Now consider the quantity $\Gamma^{\mu \nu \delta \rho} (\epsilon^\prime (p), \epsilon^\prime (k))$ and decompose it in a form such that only six form factors ($\Theta_1^\pm, i = 1, \ldots, 6$) remain non-zero when $p^2 = k^2 = m^2$

*) These correspond to the form factors defined by Renner 5.)
\[\Gamma_{\mu \nu \rho} \varepsilon^{\nu \rho} = G_1 \varepsilon^{\nu \rho} \xi_{-\nu} - \frac{1}{M_0} G_5 \varepsilon^{\nu \rho} \xi_{-\nu} \xi_{-\rho} \\
- G_6 \left(\varepsilon^{\nu} \left[\varepsilon^{\nu} \xi_{+} + \varepsilon^{\nu} \xi_{-} \right] - \varepsilon^{\rho} \left[\varepsilon^{\rho} \xi_{+} + \varepsilon^{\rho} \xi_{-} \right] \right) \\
+ G_7 \left(\varepsilon^{\nu} \left[\varepsilon^{\nu} \xi_{+} + \varepsilon^{\nu} \xi_{-} \right] + \varepsilon^{\rho} \left[\varepsilon^{\rho} \xi_{+} + \varepsilon^{\rho} \xi_{-} \right] - \varepsilon^{\nu} \left[\varepsilon^{\nu} \xi_{+} + \varepsilon^{\nu} \xi_{-} \right] \right) \\
+ G_8 \left(\varepsilon^{\nu} \left[\varepsilon^{\nu} \xi_{+} + \varepsilon^{\nu} \xi_{-} \right] - \varepsilon^{\rho} \left[\varepsilon^{\rho} \xi_{+} + \varepsilon^{\rho} \xi_{-} \right] \right) \\
+ G_9 \varepsilon^{\nu} \xi_{+} \xi_{-} + G_{10} \varepsilon^{\nu} \xi_{+} \xi_{-} \right) + G_{11} \varepsilon^{\nu} \xi_{-} \xi_{-} \right) (A.4) \\
\]

only \(G_5 \) and \(G_6 \) have \(\sigma \) poles. The \(G_1 \) can be of course expressed in terms of the \(\Theta_i \). A particularly important result of the Ward identity (E) is that one has at \(q^2 = 0 \)

\[-G_1(p^2; q^2) = G_3(0; p^2; q^2) = \frac{1}{2} \Theta_i \{ \frac{1}{0^0} - 1 \} \Delta^2(p) \] (A.5)

\(\frac{1}{2} \Theta_i \{ \frac{1}{0^0} - 1 \} \)

as noted by Renner (6).

Now follow the smoothness assumptions required to produce Renner's result.

Smoothness ansatz (I)

Suppose

\[\lim_{q \to 0^+} \left(1 - \frac{q^2}{2m^2} \right) \Gamma_{\mu \nu \rho \sigma} \]

is well approximated by tensors involving only 4th order in the momenta \(p, k \). Then defining the residues

\[R_i(p^2; q^2) = \lim_{q \to 0^+} \left(1 - \frac{q^2}{2m^2} \right) \Theta_i(q^2; p^2, q^2) \] (A.7)

\[R_i(p^2; q^2) = \lim_{q \to 0^+} \left(1 - \frac{q^2}{2m^2} \right) G_i(q^2; p^2, q^2) \] (A.8)

one has

\[R_i = R_0 = R_0^+ = R_0^- = 0 = R_0 \]

\(R_0^+, R_0^-, R_a^+, R_b, R_0^a, R_0^b \)

are constants and \(R_i, R_3 \) are linear in \(p^2 + k^2 \).
Using the Ward identities it can now be shown that the \(r_i \) can be expressed in terms of three free parameters

\[
\begin{align*}
 r_1 &= r_5 = -\frac{1}{4} m_0^2 R_5^+ \\
 r_2 &= \frac{1}{3} (R_5^+ - R_5^-) \\
 r_3 &= \frac{1}{3} m_0^2 (R_5^+ - R_5^-) \\
 r_4 &= \frac{1}{2} m_0^2 (R_5^+ + R_5^-) + \frac{1}{4} m_0^2 (p^2 + k^2) R_8^+ \\
 r_5 &= -\frac{1}{4} (2 R_6 - R_5^+ + R_5^-) \\
 r_7 &= \frac{1}{2} m_0^2 (p^2 - k^2) (R_5^+ - R_5^-) \\
 r_8 &= \frac{1}{8} m_0^2 (p^2 - k^2) (R_5^+ + R_5^-) \\
 r_9 &= \frac{1}{8} (p^2 - k^2) R_8^+ \\
 r_{10} &= -\frac{1}{8} (p^2 - k^2) R_8^- \\
 r_{11} &= \frac{1}{4} m_0^2 (p^2 - k^2) R_8^+ \\
 r_{12} &= \frac{1}{4} m_0^2 (p^2 - k^2) R_8^- \\
\end{align*}
\]

(A.9)

Now defining

\[
G_i(q^+, p^+, \mu) = C_i(q^+, p^+ \mu)(1 - \frac{q^2}{m_0^2})^{-1} \tag{A.10}
\]

we now make the second unsubtractedness ansatz (II)

\[
C_i(q^+, \mu) \\
\]

is independent of \(q^2 \) for \(i = 1, 3 \). Then we have

\[
r_1 = r_3 = \frac{1}{2} \tag{A.11}
\]

and hence \(R_5^+ \) are determined from (A.9)

\[
R_8^+ = \frac{2m_0^2}{m_0^2} = R_5^+ \tag{A.12}
\]

It now follows that all the residues at \(q^2 = m_0^2 \) of all the six form factors \(G_i, i = 1, 2, 3, 4, 7, 10 \) which remain on contraction with the polarization tensor \(\epsilon_{\mu \nu} (q) \) are well determined and we obtain Renner's result (6).
REFERENCES

1) Reviews also containing references to previous works are:
 M. Gell-Mann - Lecture notes Hawaii Summer School (1969);
 B. Zumino - Brandeis Summer Institute Notes (1970);
 J. Ellis - Paper presented at the Coral Gables Conference, CERN Preprint TH. 1289
 (1971);
 H. Fritzsch and M. Gell-Mann - Talk presented at the Coral Gables Conference (1971),

3) M. Gell-Mann - Ref. 1).

11) R.J. Crewther - Talk presented at the Coral Gables Conference, Caltech Preprint
 CALT. 68-295 (1971).

 479 (1971).

17) J. Ellis - Phys.Letters 33B, 591 (1970);

 C.G. Callan - Phys.Rev. B2, 1541 (1970);

 published;
 W.A.B. Beg, J. Bernstein, D.J. Gross, R. Jackiw and A. Sirlin - Phys.Rev.Letters

G. Barbiellini et al.

