Handbook of Digital Techniques for High-Speed Design

Design Examples, Signaling and Memory Technologies, Fiber Optics, Modeling and Simulation to Ensure Signal Integrity

Tom Granberg, Ph.D.
Contents

Preface

- How This Book Is Organized xxxvii
- This Textbook Was Written with Educational Institutions in Mind xxxix
- University Courses for Which This Book Is Suitable xl
- Solutions Manual Is Available xl
- Cash for Identifying Textbook Errors xli
- How This Book Was Prepared xlii
- Personal Acknowledgments xlii
- Technical Acknowledgments xliii

Part 1 Introduction

<table>
<thead>
<tr>
<th>Chapter 1 Trends in High-Speed Design</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Everything Keeps Getting Faster and Faster!</td>
<td>3</td>
</tr>
<tr>
<td>1.2 Emerging Technologies and Industry Trends</td>
<td>6</td>
</tr>
<tr>
<td>1.2.1 Major Drivers of Printed Circuit Board (PCB) Technology</td>
<td>6</td>
</tr>
<tr>
<td>1.2.2 Drivers of Innovation</td>
<td>6</td>
</tr>
<tr>
<td>1.2.3 I/O Signaling Standards</td>
<td>7</td>
</tr>
<tr>
<td>1.2.4 Web Site as Retailer</td>
<td>8</td>
</tr>
<tr>
<td>1.2.5 Memories</td>
<td>8</td>
</tr>
<tr>
<td>1.2.6 On-Die Terminations</td>
<td>9</td>
</tr>
<tr>
<td>1.3 Trends in Bus Architecture</td>
<td>9</td>
</tr>
<tr>
<td>1.3.1 Moving from Parallel to Serial</td>
<td>10</td>
</tr>
<tr>
<td>1.3.2 The Power of Tools</td>
<td>11</td>
</tr>
<tr>
<td>1.3.3 ASSPs and ASMs</td>
<td>12</td>
</tr>
<tr>
<td>1.4 High-Speed Design as an Offshoot from Microwave Theory</td>
<td>12</td>
</tr>
<tr>
<td>1.5 Background Disciplines Needed for High-Speed Design</td>
<td>13</td>
</tr>
<tr>
<td>1.5.1 High-Speed Conferences and Forums</td>
<td>13</td>
</tr>
<tr>
<td>1.6 Book Organization</td>
<td>14</td>
</tr>
<tr>
<td>1.7 Exercises</td>
<td>15</td>
</tr>
</tbody>
</table>
Chapter 2 ASICs, Backplane Configurations, and SerDes Technology

2.1 Application-Specific Integrated Circuits (ASICs)
2.2 Bus Configurations
 2.2.1 Single-Termination Multidrop
 2.2.2 Double-Termination Multidrop
 2.2.3 Data Distribution with Point-to-Point Links
 2.2.4 Multipoint
 2.2.5 Switch Matrix
 Mesh and Fabric Point-to-Point Bus Architectures
2.3 SerDes Devices
 2.3.1 SerDes Device Fundamentals
 2.3.2 SerDes at 5 Gbps
 2.3.3 SerDes Multibit Signal Encoding
2.4 Electrical Interconnects vs. Fiber Optics
2.5 Subtleties of Device Families
 2.5.1 Logic vs. Interface Families
 2.5.2 Murky Device Categories
 2.5.3 Logic Family vs. Signaling Standard
2.6 EDN Magazine’s Microprocessor Directory
2.7 Exercises

Chapter 3 A Few Basics on Signal Integrity

3.1 Transmission Lines and Termination
 3.1.1 Transmission Line Equations
 3.1.2 Reflection Coefficients, Lattice Diagrams, and Termination
3.2 Important High-Speed Concepts
 3.2.1 Rise Time and Edge Rate
 3.2.2 Length of the Rising Edge
 3.2.3 Knee Frequency
 3.2.4 Single-Ended vs. Differential Transmission
 3.2.5 Fast Edge Rate Effects
 3.2.6 Parasitics
3.3 High-Frequency Effects: Skin Effect, Crowding Effect, Return Path Resistance, and Frequency-Dependent Dielectric Loss
3.4 Jitter Measurements Using Eye Patterns
3.5 BER Testing
3.6 Exercises
Part 2 Signaling Technologies and Devices

Chapter 4 Gunning Transceiver Logic
(GTL, GTLP, GTL+, AGTL+)

4.1 Evolution from Backplane Transceiver Logic (BTL) 51
4.2 Gunning Transceiver Logic (GTL) 53
4.3 Gunning Transceiver Logic Plus (GTLP)
 4.3.1 GTLP General Description and Applications 54
 4.3.2 GTLP Throughput and Performance 56
 4.3.3 GTLP Signaling Levels, Noise Margins, and Current Drive 56
 4.3.4 GTLP Device Features
 Live Insertion and Extraction 58
 Controlled Edge Rates 58
 Bushold (A Port) 60
 4.3.5 GTLP Backplane Design Considerations 61
 4.3.6 GTLP Power Consumption 64
4.4 Intel's AGTL+ and GTL+
4.5 GTLP/GTL/GTL+/AGTL+ Summary 67
4.6 Exercises 69

Chapter 5 Low Voltage Differential Signaling (LVDS)

5.1 Introduction to LVDS
 5.1.1 How LVDS Works 73
 5.1.2 Why Low Swing Differential? 77
 5.1.3 The LVDS and M-LVDS Standards
 The TIA/EIA-644-A Standard 78
 5.1.4 Appearance of Laboratory LVDS Waveforms
 More Discussion of the Evaluation Board 82
 Common-Mode Noise 84
 Probing of High-Speed LVDS Signals 86
 5.1.5 Easy Termination 87
 5.1.6 Maximum Switching Speed 88
 5.1.7 Saving Power 88
 5.1.8 LVDS Configurations 88
 5.1.9 Low Voltage Differential Signaling (LVDS) Families 90
 5.1.10 LVDS as a Low-Cost Design Solution 91
 5.1.11 Example of the Wide Range of LVDS Solutions 92
5.2 Comparison of LVDS to Other Signaling Technologies
 Using Design Examples
 5.2.1 LVDS Drivers and Receivers
 5.2.2 100 Mbps Serial Interconnect
 5.2.3 LVDS Channel Link Serializers
 5.2.4 1 Gbps 16-Bit Interconnect
 5.2.5 1.4 Gbps 56-Bit Backplane
5.3 Summary of LVDS Features and Applications
5.4 Exercises

Chapter 6 Bus LVDS (BLVDS), LVDS Multipoint (LVDM), and Multipoint LVDS (M-LVDS)
 6.1 Justification for Enhanced Versions of LVDS
 6.2 Bus LVDS (BLVDS)
 6.2.1 System Benefits of Bus LVDS
 6.2.2 High-Speed Capability
 6.2.3 Low Power
 6.2.4 Low Swing, Low Noise, and Low EMI
 6.2.5 Low System Cost
 6.2.6 Bus Failsafe Biasing
 6.2.7 Hot Plugging (Live Insertion)
 6.3 LVDS Multipoint (LVDM)
 6.4 Multipoint LVDS (M-LVDS)
 6.4.1 The TIA/EIA-899 Standard
 6.5 Selecting BLVDS, BLVM, and M-LVDS Devices
 6.6 Exercises

Chapter 7 High-Speed Transceiver Logic (HSTL) and Stub-Series Terminated Logic (SSTL)
 7.1 High-Speed Transceiver Logic (HSTL)
 7.1.1 The HSTL Standard
 7.1.2 Supply Voltages and Logic Levels
 7.1.3 Classes of HSTL Output Buffers
 7.1.4 FPGAs with HSTL I/Os
 7.1.5 HSTL Summary
 7.2 Stub-Series Terminated Logic (SSTL)
 7.2.1 SSTL_3
 Supply Voltage and Logic Input Levels
 SSTL_3 Output Buffers
Chapter 8 Emitter Coupled Logic (ECL, PECL, LVPECL, ECLinPS Lite and Plus, SiGe, ECL Pro, GigaPro and GigaComm)

8.1 A Fast Technology — Edge Rates of 20 ps at 12 Gbps 165
8.1.1 The ECL Families 167
8.1.2 ECL Vendor Products 167
8.1.3 Comparison of Several ECL Family Members 169
 Power Consumption of ECL Family Devices 169
8.2 Basic Device Operation 171
8.3 The Two Major ECL Standards — 10K and 100K 172
 8.3.1 ECL Output Load Drive Characteristics 174
 8.3.2 The “10” and “100” Prefixes — Both Family and Standard 175
 8.3.3 Five Kinds of ECL Family Outputs 175
8.4 Single-Ended and Differential Signaling 175
 8.4.1 Standard ECL Interface: Differential Driver and Receiver 176
 Advantages and Disadvantages of Single-Ended and Differential Interconnects 176
 8.4.2 Single-Ended Interface 176
 VBB Reference 177
 The Voltage Reference Source VBB 178
 Dedicated Single-Ended Input Structure 178
 Single-Ended Interface Between 10 and 100 Standards 179
 Voltage Transfer Curves 179
 8.4.3 Differential Interface 180
 VIHCMR 181
 Differential Interface Between 10 and 100 Standards 181
 ECL Noise Margins 181
8.5 Component Nomenclature 183
8.6 The ECL Families and Their Characteristics 184
 8.6.1 A Little MECL History 184
8.6.2 10K 184
8.6.3 10H 185

Dual Meaning of 10H Prefix 185
8.6.4 100K 185
8.6.5 100H 186
 100H Used as Designation for Clock Drivers/Translators 186
 Caution: 10H and 100H Devices with “L” Suffix 186
 May Use Other Power Options 186
 Micrel’s 10H and 100H 187
8.6.6 ECL, PECL, Pseudo ECL, NECL, LVECL, LVPECL, and LVNECL 187
 300 Series ECL 187
 Super-300K ECL 188
 9300 and 9400 Series ECL/PECL 188
 ON Semiconductor’s GigaComm Family (SiGe) 188
 Hot Swapping PECL Risk: Powered Driver and Unpowered Receiver 189
8.6.7 ECL in PS and Low Voltage ECL in PS 189
8.6.8 ECL in PS Lite, Low Voltage ECL in PS Lite, and ECL Lite 189
8.6.9 ECL in PS Plus, ECL Pro, ECL in PS Pro, and Low Voltage ECL in PS Plus 191
8.6.10 Reduced Swing ECL (RSECL, RSPECL, RSNECL) 191
 and Variable Outputs 191
 Reduced-Swing ECL vs. Low Voltage ECL 193
8.7 Summary of the ECL Families 193
8.8 Exercises 195

Chapter 9 Current-Mode Logic (CML) 199
9.1 CML Overview 199
9.2 CML Output Structure 202
9.3 CML Input Structure 203
9.4 ac- and dc-Coupled CML Circuits 204
9.5 XAUI Interface Standard 207
9.6 CML Design Considerations 211
 9.6.1 Pre-Emphasis, De-Emphasis, Transmit Equalization, 211
 and Receive Equalization 211
 9.6.2 ac Coupling Requires 8B/10B Encoding or dc-Balanced Signal 213
9.7 How CML and ECL Differ 213
9.8 SuperLite CML and GigaPro™ CML 218
9.9 Vendor-Specific CML Examples 218
 9.9.1 Texas Instruments’ SN65CML100 218
 9.9.2 Texas Instruments’ TLK2501 1.5 to 2.5 Gbps Transceiver 220
Chapter 10 FPGAs — 3.125 Gbps RocketIOs and HardCopy Devices

10.1 Industry Trends

10.2 Altera FPGAs and CPLDs
 10.2.1 Altera FPGAs with Embedded High-Speed Transceivers
 Stratix GX FPGAs with up to 20 Channels of 3.1825 Gbps SerDes
 Mercury FPGAs with up to 45 Gbps of Bandwidth
 10.2.2 Altera HardCopy Devices
 Elimination of ASIC Risk
 HardCopy Devices Designed with Quartus II Software
 HardCopy Stratix and APEX Devices
 10.2.3 High-Density FPGAs
 Stratix FPGAs
 APEX FPGAs
 10.2.4 Low-Cost/High-Volume FPGAs
 Cyclone FPGAs
 ACEX FPGAs
 10.2.5 Altera FPGAs with Embedded Processors
 Excalibur Devices
 10.2.6 Altera CPLDs
 MAX 3000 CPLDs
 MAX 7000 CPLDs
 MAX 7000AE CPLDs
 MAX 7000B CPLDs
 MAX 7000S CPLDs
 10.2.7 Configuration Devices

10.3 Xilinx FPGAs and CPLDs
 10.3.1 Virtex FPGAs
 10.3.2 Spartan FPGAs
 10.3.3 CPLDs
 CoolRunner CPLDs
 XC9500
 10.3.4 More About the Virtex-II Pro FPGA
 10.3.5 Virtex-II Pro RocketIO Multi-Gigabit Transceiver
 10.3.6 The Virtex-II Pro PowerPC 405 Processor Core
 PPC405x3 Hardware Organization
10.3.7 Applications of the Virtex-II Pro
- Data Pipes 253
- Reducing PCB Complexity 254

10.3.8 Support of Communications Standards
- System-on-a-Chip (SOC) Designs 254
- Network Processing 255
- Protocol Bridges 255

10.3.9 Other Features of Virtex-II Pro Devices
- Global Clock Networks 255
- Single-Ended SelectIO™-Ultra Resources 256
- LVDS I/O 256
- LVPECL I/O 256
- Block SelectRAM™ Memory 256
- Distributed SelectRAM Memory 256
- Bitstream Encryption 257
- Loopback 257
- Digital Clock Managers (DCMs) 257
- Digitally Controlled Impedance (DCI) 258
- Double-Data-Rate (DDR) I/O 258

10.3.10 IBIS and SPICE Models for Xilinx Devices 258

10.3.11 Xilinx Intellectual Property (IP) Cores 259

10.4 Exercises 260

Chapter 11 Fiber-Optic Components 263

11.1 Getting On Board with Optics 263
- 11.1.1 The Rationale for Optical Interconnects 263
- 11.1.2 Optics in the Physical Design 264
- 11.1.3 Modeling Optical Interconnects 265

11.2 Comparison of Copper and Fiber Transmission Media 265

11.3 Application Space for High-Speed Optical Data Link Modules 267

11.4 Using Fiber for the Short Haul 268
- 11.4.1 User Beware 271

11.5 The 10 Gbps X-Modules 272
- 11.5.1 Xenpak 273
 - Xenpak MSA 275
- 11.5.2 Xpak 276
- 11.5.3 X2 Module 277
- 11.5.4 XFP Module 278

11.6 PAROLI 2 Parallel Optical Link Modules and Backplane Optical Interconnects 279

11.7 Dense-Wavelength-Division Multiplexing (DWDM) 283
11.8 Trends in the Application of Fiber Optics
 11.8.1 Exciting Optical Devices
 11.8.2 PON Devices
11.9 Optical Cable Applications
11.10 Optical Internetworking Forum (OIF)
11.11 Fiber-Optic Connectors
 11.11.1 Small Form Factor Connectors
 11.11.2 InfiniBand Connectors
11.12 Laser Safety
11.13 Vendors and Organizations for Fiber-Optic Components
11.14 Exercises

Chapter 12 High-Speed Interconnects and Cabling
 12.1 SiliconPipe's 12.8 GHz to 40 GHz Interconnect Solutions
 12.1.1 Yosemite — 40 Gbps Backplane Channel Technology
 12.1.2 Sequoia — 20 Gbps Chip-to-Chip Channel Technologies
 12.1.3 Grand Canyon — 12.8 Gbps Memory Channel Technologies
 ChaniPlexer — High-Speed Memory Channel
 SeriiPlexer — Next-Gen Memory Channel Technology
 12.1.4 Limitations of Conventional Backplanes
 12.1.5 How SiliconPipe Technology Works
 Backplanes
 Memory Interconnects
 12.2 High-Speed Connectors
 12.2.1 Teradyne VHDM-HSD Connector Example
 12.2.2 XAUI Connectors
 12.2.3 InfiniBand Connector
 12.3 High-Speed Cabling
 12.3.1 Copper Cable Applications
 12.3.2 InfiniBand Cabling
 12.4 Cables and Connectors for LVDS
 12.4.1 General Comments on Cables and Connectors
 12.4.2 Cabling Suggestions
 Twisted Pair
 Twin-Ax Cables
 Flex Circuit
 Ribbon Cable
 12.4.3 Connectors
 12.4.4 Cable Ground and Shield Connections
 12.5 Exercises
Part 3 High-Speed Memory and Memory Interfaces

<table>
<thead>
<tr>
<th>Chapter 13 Memory Device Overview and Memory Signaling Technologies</th>
<th>315</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1 Overview and Trends</td>
<td>315</td>
</tr>
<tr>
<td>13.2 A Quick Review of Memory Basics</td>
<td>319</td>
</tr>
<tr>
<td>13.2.1 Read/Write Memory</td>
<td>319</td>
</tr>
<tr>
<td>13.2.2 Static RAM</td>
<td>320</td>
</tr>
<tr>
<td>Static RAM Inputs and Outputs</td>
<td>320</td>
</tr>
<tr>
<td>Static RAM Timing</td>
<td>321</td>
</tr>
<tr>
<td>Synchronous SRAM</td>
<td>323</td>
</tr>
<tr>
<td>13.2.3 Dynamic RAM (DRAM)</td>
<td>325</td>
</tr>
<tr>
<td>Dynamic RAM Structure</td>
<td>325</td>
</tr>
<tr>
<td>Dynamic RAM Timing</td>
<td>327</td>
</tr>
<tr>
<td>Synchronous DRAMs</td>
<td>329</td>
</tr>
<tr>
<td>FPM (Fast Page Mode) DRAM</td>
<td>330</td>
</tr>
<tr>
<td>EDO DRAM (Extended Data Out DRAM)</td>
<td>331</td>
</tr>
<tr>
<td>RLDRAM (Reduced Latency DRAM)</td>
<td>331</td>
</tr>
<tr>
<td>13.2.4 Special Application Memory</td>
<td>331</td>
</tr>
<tr>
<td>Video RAM (VRAM)</td>
<td>331</td>
</tr>
<tr>
<td>Dual-Port Graphics Buffer</td>
<td>331</td>
</tr>
<tr>
<td>SGRAM (Synchronous Graphics RAM)</td>
<td>332</td>
</tr>
<tr>
<td>13.2.5 Read-Only Memory (ROM)</td>
<td>332</td>
</tr>
<tr>
<td>13.2.6 Flash Memory</td>
<td>333</td>
</tr>
<tr>
<td>13.2.7 ECC (Error-Correcting Code) Memory</td>
<td>333</td>
</tr>
<tr>
<td>13.2.8 Banks and Ranks</td>
<td>334</td>
</tr>
<tr>
<td>Banks</td>
<td>334</td>
</tr>
<tr>
<td>Ranks</td>
<td>334</td>
</tr>
<tr>
<td>13.2.9 Memory Nomenclature</td>
<td>335</td>
</tr>
<tr>
<td>Speed Bin</td>
<td>336</td>
</tr>
<tr>
<td>13.3 Memory Signaling Technologies</td>
<td>337</td>
</tr>
<tr>
<td>13.3.1 SSTL-18, SSTL-2, and HSTL (Class II)</td>
<td>337</td>
</tr>
<tr>
<td>13.3.2 RSL (Rambus Signaling Level)</td>
<td>337</td>
</tr>
<tr>
<td>13.3.3 DRSL (Differential Rambus Signaling Levels)</td>
<td>338</td>
</tr>
<tr>
<td>13.3.4 QRSL (Quad Rambus Signaling Levels)</td>
<td>339</td>
</tr>
<tr>
<td>13.3.5 Octal Data Rate (ODR)</td>
<td>340</td>
</tr>
<tr>
<td>13.4 Design Considerations in Use of Memory</td>
<td>340</td>
</tr>
<tr>
<td>13.4.1 Power Up and Initialization</td>
<td>340</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>13.4.2</td>
<td>Slew Rate Control</td>
</tr>
<tr>
<td>13.4.3</td>
<td>Drive Capability</td>
</tr>
<tr>
<td>13.4.4</td>
<td>On-Die Termination (ODT)</td>
</tr>
<tr>
<td>13.4.5</td>
<td>Memory Power and Ground Planes</td>
</tr>
<tr>
<td>13.4.6</td>
<td>Memory Controllers</td>
</tr>
<tr>
<td>13.5</td>
<td>Summary of Memory Devices and Terminology</td>
</tr>
<tr>
<td>13.6</td>
<td>Exercises</td>
</tr>
</tbody>
</table>

Chapter 14 Double Data Rate SDRAM (DDR, DDR2) and SPICE Simulation

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.1</td>
<td>DDR (Double Data Rate) SDRAM</td>
<td>353</td>
</tr>
<tr>
<td>14.1.1</td>
<td>Differences Between SDRAM and DDR SDRAM</td>
<td>354</td>
</tr>
<tr>
<td>14.2</td>
<td>DDR2 (Double Data Rate 2, DDR-II) SDRAM</td>
<td>363</td>
</tr>
<tr>
<td>14.2.1</td>
<td>DRAM Architecture Changes</td>
<td>364</td>
</tr>
<tr>
<td>14.2.2</td>
<td>On-Die Termination</td>
<td>366</td>
</tr>
<tr>
<td>14.2.3</td>
<td>Additional Mode Register Changes</td>
<td>373</td>
</tr>
<tr>
<td>14.3</td>
<td>Summary of Memory Devices and Terminology</td>
<td>344</td>
</tr>
<tr>
<td>14.4</td>
<td>Exercises</td>
<td>350</td>
</tr>
</tbody>
</table>
14.3 SPICE/IBIS Simulation of DDR-II SDRAM 382
14.3.1 SPICE/IBIS Simulations of DQ and DQS Pins 382
14.3.2 Clock Signal Integrity 387
14.4 Exercises 389

Chapter 15 GDDR3, ZBT, FCRAM, SigmaRAM, RLDRAM, DDR SRAM, Flash, FeRAM, and MRAM 391
15.1 Graphics Double Data Rate SDRAM (GDDR, GDDR2, GDDR3) 391
15.1.1 GDDR3 (Graphics DDR 3) 394
 GDDR3 Device Operation 394
 GDDR3 Power Consumption Calculations 395
15.1.2 Terminology; GDDR SDRAM vs. DDR SGRAM 395
15.2 ZBT, NoBL, ZeroSB, and NiRAM SRAM 396
15.3 FCRAM (Fast Cycle RAM) 397
15.3.1 Network FCRAM 399
15.3.2 Mobile FCRAM 399
 Stacked MCP (Multi-Chip Package) 400
15.3.3 Consumer FCRAM 400
 The Low Latency of Consumer FCRAM 401
 Consumer FCRAM for SiP (System-in-a-Package) 404
15.3.4 Summary of FCRAM Features 404
15.4 SigmaRAM (ΣRAM) 405
15.4.1 The SigmaRAM Family 406
15.4.2 SigmaRAM Features 407
15.5 RLDRAM (Reduced Latency DRAM) 407
15.5.1 RLDRAM as a New Memory Standard for High-Speed Applications 408
 Networking Requirements 408
 Programmable Impedance Output Buffer 409
15.5.2 RLDRAM I and RLDRAM II 409
15.6 DDR SRAM (Double Data Rate SRAM — DDR, DDRII SRAM) 410
15.6.1 DDRII SRAM Specified by QDR Consortium 411
15.6.2 Comparison of DDRII SRAM and DDR-II SDRAM I/Os 412
15.7 Flash Memory 412
15.7.1 Flash Densities, Access Times, and Other Features 413
15.7.2 Cell Phone Applications 414
15.7.3 NOR vs. NAND Flash 415
15.7.4 Significance of Block Size 416
15.7.5 Read-While-Write (RWW) Flash 417
Chapter 16 Quad Data Rate (QDR, QDRII) SRAM

16.1 Introduction to QDR
 16.1.1 Choosing the Right SRAM
 16.1.2 Address Rate
 16.1.3 Write Data Placement
 16.1.4 Clocking Design

16.2 QDR SRAM Clocking Scheme
 16.2.1 The QDR Device
 16.2.2 Using the Separate Input and Output Clocks
 16.2.3 Latching Data at the Controller

16.3 Comparison of QDR with QDRII
 16.3.1 QDRII and QDR Functional Differences
 16.3.2 QDRII Features
 Data Valid Window
 Echo Clocks
 16.3.3 Negative Hold Times
 16.3.4 Impact of DLL on the Operating Frequency Range
 16.3.5 Choosing Between Burst of 2 and Burst of 4
 16.3.6 Compatibility Considerations Between QDRII and QDR
 16.3.7 Typical Implementation in a System
 Write Timings
 Read Timings
 16.3.8 Package
 16.3.9 Output Impedance Control
 16.3.10 Data Line Terminations
 QDR IBIS and HSPICE Models
Chapter 17 Direct Rambus DRAM (DRDRAM) 451
17.1 Direct Rambus DRAM™ (DRDRAM, RDRAM) 452
 17.1.1 RDRAM Memory 454
 17.1.2 The Memory Landscape 455
 17.1.3 Bandwidth and Latency
 Comparing RDRAM with SDRAM and DDR SDRAM 456
 Assumptions for Comparisons 457
 Real-World Performance: Bandwidth 457
 SDRAM Bank Conflict and Command Bus Bandwidth Limitations 458
 Real-World Performance: Latency 459
 17.1.4 System Cost: Memory Granularity 459
 17.1.5 System Cost: Pincount and Bandwidth 460
 17.1.6 Motherboard Layers and Power Dissipation 460
17.2 Long-Channel Design 461
 17.2.1 Rambus Memory System 461
 17.2.2 Schematics of a 16-Bit, Long-Channel Rambus System 463
17.3 Exercises 468

Chapter 18 Xtreme Data Rate (XDR) DRAM, FlexPhase and ODR 471
18.1 Introduction to XDR 471
 18.1.1 XDR DRAM 472
 18.1.2 XDR DRAM Summary Table 473
 18.1.3 DRAM Block Diagram 473
 18.1.4 XDR System Overview 475
18.2 XDR Physical Layer 476
 18.2.1 Signaling 476
 18.2.2 Clocking 477
 18.2.3 Data Transfers 478
 18.2.4 Address/Control Transfers 479
 18.2.5 XDR I/O Cell (XIO) 480
18.3 XDR Logical Layer 481
 18.3.1 Write Transaction 482
 18.3.2 Read Transaction 482
18.4 Applications 482
18.4.1 The Gaming Console Solution 482
18.4.2 The HDTV/Consumer Solution 483
18.4.3 The PC Graphics Solution 484
18.4.4 The PC Main Memory Solution 484
18.5 Exercises 486

Chapter 19 Differential and Mixed-Mode S-Parameters 491
19.1 S-Parameters Bridge the Gap Between Chips and Systems 492
19.2 The Rationale for Using S-Parameters 493
19.2.1 Package Measurements 494
19.3 Single-Ended S-Parameters 495
19.3.1 Introduction 495
19.3.2 Two-Port Network Theory 495
19.3.3 Using S-Parameters 496
 Derivation 497
19.3.4 Smith Chart Transformation 499
19.3.5 Advantages of S-Parameters 500
19.4 Differential and Mixed-Mode S-Parameters, 501
19.4.1 The Need for Differential and Mixed-Mode S-Parameters 507
19.4.2 Return Loss Measurement Example 508
19.4.3 Touchstone Format 510
19.5 Calibration 511
19.5.1 Measurement Errors 511
19.5.2 Removing Test Fixture Effects: Direct Measurement and De-Embedding 511
19.5.3 Calibration Example: Using Direct Measurement to Eliminate Test Fixture Effects 513
19.6 Exercises 516

Chapter 20 Time Domain Reflectometry (TDR), Time Domain Transmission (TDT), and VNAs 519
20.1 Time Domain Reflectometry (TDR) 519
20.1.1 Introduction 519
20.1.2 Single-Ended TDR Measurements 520
 TDR and Lumped Element Analysis 522
 TDR Resolution and Rise Time 522
20.1.3 Differential TDR Measurements
 Differential and Odd-, Common- and Even-Mode Impedances
 524

20.1.4 Cables, Connectors, and Probes
 527

20.1.5 Multiple Reflections and the True Impedance Profile
 528

20.1.6 Other TDR Measurement Issues
 Using Good Measurement Practices
 TDR Measurements of "Splits" and "Stubs"
 531

20.1.7 Frequency Domain and TDR
 532

20.1.8 Static Discharge Precautions
 534

20.1.9 Controlling Rise Time
 534

20.1.10 Example of TDR Oscilloscope
 535

20.2 Time Domain Transmission (TDT)
 536

20.3 TDR and TDT Simulations for a Loaded BLVDS Backplane
 536

 20.3.1 Loading Effects of Connectors, Stubs, and ICs on the Backplane
 536

 20.3.2 Effect of Plug-In Card Stub Lengths
 538

20.4 Vector Network Analyzer (VNA)
 540

 20.4.1 VNA Instrumentation Background
 540

 20.4.2 Network Analyzer Terminology:
 R, A, and B Channels vs. Port 1 and Port 2
 541

 20.4.3 The Differences Between VNAs, Scalar Network Analyzers
 (SNAs), and Spectrum Analyzers
 542

 20.4.4 Vector Error Correction of Systematic Measurement Errors
 544

 20.4.5 The Mathematics of Time and Frequency
 545

 20.4.6 Practical Comparison of TDR and VNA Measurements
 Frequency Domain Measurements Using TDR
 546

 20.4.7 VNAs with Time Domain Capability
 550

 20.4.8 Comparison, Summary, and Recommendations
 550

20.5 Exercises
 551

Chapter 21 Modeling with IBIS
 555

21.1 An Introduction to IBIS (I/O Buffer Information Specification) Modeling
 555

 21.1.1 Introduction
 555

 21.1.2 About IBIS
 556

 21.1.3 History of IBIS
 556

 21.1.4 Golden Parser
 557

 21.1.5 Advantages of IBIS
 557

 21.1.6 Input Structure Model
 557

 21.1.7 Output Structure Model
 557
Chapter 22 Mentor Graphics — EDA Tools for High-Speed Design, Simulation, Verification, and Layout

22.1 Overview of Mentor Graphics High-Speed Tools
22.2 ICX
 22.2.1 IS_Analyzer
 Hierarchical Rules Entry and Management
 Analysis and Verification
 System-Level Definition and Analysis
 IS_Analyzer Major Benefits
 22.2.2 IS_Floorplanner
 Hierarchical Rules Management
 Hierarchical Floorplanning
 A Complete What-If Analysis Environment
 Analysis and Verification
 Major IS_Floorplanner Benefits
 22.2.3 IS_Multiboard
 System-Level PCB Design
 System-Level Definition
 Analysis and Verification
 22.2.4 IS_Optimizer
 Electrically Driven Interconnect Design
 Hierarchical Rules Entry and Management
 Interconnect Optimization
 Interactive Synthesis
 Underlying Architecture
 22.2.5 IS_Synthesizer
 Electrically Driven Interconnect Design
 Hierarchical Rules Entry and Management
 Interconnect Optimization
 Interactive Synthesis
 Powerful Underlying Technology
22.3 Tau
 22.3.1 Circuit Timing Methods and Symbolic Timing
 Timing Methods
Contents

Symbolic Timing Analysis with Tau 585
Timing Models 585
Using Tau in a Workflow 586
Conclusion 587

22.4 HyperLynx 587

22.4.1 HyperLynx GHz 588
- Complete SI and EMC Analysis Suite 589
- LineSim GHz 589

22.4.2 HyperLynx EXT 589
- Complete SI and EMC Analysis Suite 590
- LineSim EXT 590

22.5 Mentor Graphics Field Solvers Used in ICX and HyperLynx 591

22.5.1 Introduction 591

22.5.2 Geometry Problem Entry and Discretization 592
22.5.3 Speed and Accuracy 593
22.5.4 The Method of Moment Technique 593

22.6 The Expedition Series and Design Flow 594

22.6.1 DxDesigner 594
- Design Reuse 595
- Integration with the Enterprise 596
- Constraint-Based Design 596
- Variant Management 596

22.6.2 Expedition PCB 596
- AutoActive Technology 597
- Dynamic Area Fills 598
- Rules by Area 598
- Multiplow with Variable Via Patterns 598
- Dynamic Hazard Review 599
- ECOs with Expedition PCB and the Expedition Series 599
- Constraint Definition 599
- Net Timing 599
- Differential Pair Routing 599
- Advanced Interconnect Routing 599
- TeamPCB 601
- Design Reuse 601
- DMS — Design Data Management 601

22.6.3 FPGA BoardLink 601
- FPGA On-Board 602
- Reducing Design Times for FPGA/PCB Integration 602
- FPGA Device Support 603

22.6.4 HDL Designer Series (FPGA Advantage) 603
- The Design Manager Provides Complete Design Visibility 603
- Tasks Support Repeatable Design Process 603
Mix Text, Tabular, and Graphical Editors for Varying Design Requirements 604
Interfaced-Based Design Methodology Rapidly Defines Design Structure 604
Intuitive Graphical Editors 605
Flexible ModuleWare Logic Generator 605
Practical IP and Design Reuse 605
22.6.5 ModelSim (FPGA Advantage) 606
High-Performance, Trilingual Verification Environment 606
Verilog 2001/SystemVerilog 607
22.6.6 Quiet Expert 607
EMC-Based Design Rule Checker 607
Easy Viewing of Results 608
Customizable Flow Control 609
22.7 Signal Integrity and Timing Models 610
22.7.1 Signal Integrity Models 610
IBIS 610
SPICE 610
VHDL-AMS 610
22.7.2 Timing Models 611
TDML 611
STAMP 612
TDML vs. STAMP 613
22.8 Use the Right Models for Simulation of Multigigabit Channels 613
22.8.1 Introduction 613
22.8.2 The Circuit under Study 614
22.8.3 Model Reduction 616
22.8.4 Package Model Simplification 617
Package Element Elimination 619
IBIS RLC Package 619
S-Parameter Package Model 619
22.8.5 Behavioral Modeling 620
22.8.6 Conclusion 622
22.9 Exercises 623

Part 5 Design Concepts and Examples 625

Chapter 23 Advances in Design, Modeling, Simulation, and Measurement Validation of High-Performance Board-to-Board 5-to-10 Gbps Interconnects 627
23.1 Introduction 627
23.2 Modeling Methodology 630
23.2.1 Major System Elements
- PCB Trace Modeling
- Connector Design
- Breakout Region (BOR) Modeling
- Vias

23.3 Simulation
23.3.1 HSPICE W-Element Issues
- Passivity in Frequency Domain Network Measurement and Simulation
- Managing Error in Frequency Domain Network Parameters
- Error-Induced Nonpassivity of Network Parameters
- Correcting Error Induced Nonpassivity in S-Parameter Network Models

23.4 Measurement
23.4.1 The Design and Need for High-Accuracy Test Boards
- High-Bandwidth SMA Launch
- Isolation of Traces Prior to Final Inch
- Reference Structures

23.5 Measurement Accuracy Issues
23.5.1 SMA Launch
23.5.2 Traces
23.5.3 Measurements

23.6 Frequency Domain Measurement
23.6.1 Calibration
23.6.2 Measurements
23.6.3 Time Domain Measurements
23.6.4 Application Proof

23.7 Validation of Material Parameters
23.7.1 Terms
23.7.2 Some Extracted Data
23.7.3 Overview of Characterization Methods

23.8 Stripline Measurements
23.8.1 Stackup
23.8.2 dc Resistance
23.8.3 Characteristic Impedance and Delay

23.9 Stripline Results
23.9.1 Effective Relative Dielectric Constant
23.9.2 Total Losses for Stripline
23.9.3 Loss Tangent Estimation

23.10 Calculation Methods and Validation
23.10.1 Comparison of Connector Simulations with
and without Final Inch and Discussion of Advantages
25.2.11 Ground Return Paths
25.2.12 Cable Shielding
25.2.13 Common-Mode Noise Rejection
25.3 LVDS Configurations
25.4 Failsafe Biasing of LVDS
 25.4.1 LVDS Failsafe Conditions
 25.4.2 Boosting Failsafe in Noisy Environments
 25.4.3 Choosing External Failsafe Resistors
 25.4.4 Power-Off High Impedance Bus Pins
25.5 Eye Pattern Test Circuit
 25.5.1 Eye Pattern Test Procedure
 25.5.2 Eye Pattern Test Results and Data Points
25.6 BER Test Circuit
 25.6.1 BER Test Procedure
 25.6.2 BER Tests and Results
25.7 Exercises

Chapter 26 Designing to 10 Gbps Using SerDes Transceivers, Serializers, and Deserializers
26.1 Introduction and the DS92LV16 (2.56 Gbps)
26.2 Bus LVDS SerDes Architecture
26.3 Bus Topologies/Applications
 26.3.1 Point-to-Point
 26.3.2 Multidrop
26.4 Backplanes
 26.4.1 Point-to-Point
 26.4.2 Multidrop
 26.4.3 Termination
26.5 PCB Recommendations
26.6 Cables and Connectors
 26.6.1 Cables
 26.6.2 Connectors
26.7 Power and Ground
 26.7.1 General Recommendations
 26.7.2 DS92LV16 Bypassing Recommendations
 PVDD/PGND PLL Supply
 AVDD/AGND LVDS Supply
 Comparing Power Consumption
Contents

DVDD/DGND Digital Supply

- 26.7.3 Power-Up Sequencing 746

26.8 Clocking

- 26.8.1 Transmit Clock (TCLK) 746
- 26.8.2 Receiver Reference Clock (RefCLK) 747
- 26.8.3 Receiver Output Clock (RCLK) 747
 - Clock Jitter 747

26.9 Inputs and Outputs

- 26.9.1 Unused LVTTL Inputs 748
- 26.9.2 Floating Bus LVDS Receiver Inputs and Failsafe 748
- 26.9.3 Receiver CMOS Output Drive 748

26.10 Evaluating the DS92LV16

- 26.10.1 Evaluation Board 749
- 26.10.2 Probing Bus LVDS Signals 749

26.11 Loopback Testing

- 26.11.1 Local Loopback 750
- 26.11.2 Line Loopback 751

26.12 Lock to Random Data vs. SYNC Patterns

- 26.12.1 SYNC Patterns 751
- 26.12.2 Lock to Random Data 751
- 26.12.3 Sending SYNC Patterns vs. Lock to Random Data 752
- 26.12.4 Once Lock Is Achieved 752

26.13 Interconnect Jitter Margin

- 26.13.1 Interconnect Jitter Mask 752
- 26.13.2 Validating Signal Quality 754
- 26.13.3 Steps to Construct a Jitter Mask 754
- 26.13.4 Alternative Jitter Estimates Using Only the Device Datasheet 758

26.14 Troubleshooting 759

26.15 Quad 2.5 Gbps (10 Gbps) Serializer/Deserializer (SerDes)

- 26.15.1 General Description 760
- 26.15.2 DS25C400 Features 761
- 26.15.3 Selectable Pre-Emphasis to Improve Signal Quality 761
- 26.15.4 Equalization Filtering at Receiver 762

26.16 Eight-Channel 10:1 Serializer for 5.28 Mbps

- 26.16.1 Serializer General Description 763
- 26.16.2 Serializer Features 763
- 26.16.3 Serializer Functional Description 765
 - Initialization 765
Chapter 27 WarpLink SerDes System Design Example 775

27.1 WarpLink Design Overview 775

27.2 Introduction 776

27.2.1 WarpLink 2.5 Quad Device 776

27.2.2 WarpLink Reference Design Platform Goals 778

27.2.3 WarpLink Reference Design Platform Overview 779

27.3 Detailed Design Descriptions 783

27.3.1 WarpLink Reference Backplane 783

27.3.2 Line, Switch, and Test Cards 788

27.4 WarpLink Signal Integrity HSPICE Simulations 788

27.4.1 WarpLink Gigabit Simulations 788

27.4.2 WarpLink Interconnect Impedance Profile 792

27.4.3 WarpLink Reference System Clock Simulations 795

27.5 Descriptions of Passive Signal Integrity Measurements 796

27.5.1 Time Domain Reflectometry (TDR) 796
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>27.5.2</td>
<td>Differential Time Domain Crosstalk</td>
<td>797</td>
</tr>
<tr>
<td>27.5.3</td>
<td>Eye Diagrams</td>
<td>797</td>
</tr>
<tr>
<td>27.5.4</td>
<td>Time Domain Test Equipment</td>
<td>797</td>
</tr>
<tr>
<td>27.6</td>
<td>Passive Measurement Results</td>
<td>798</td>
</tr>
<tr>
<td>27.6.1</td>
<td>TDR Results</td>
<td>798</td>
</tr>
<tr>
<td>27.6.2</td>
<td>Eye Diagram Measurement Results</td>
<td>798</td>
</tr>
<tr>
<td>27.7</td>
<td>Active Measurement Results</td>
<td>800</td>
</tr>
<tr>
<td>27.7.1</td>
<td>Test Setup</td>
<td>801</td>
</tr>
<tr>
<td>27.7.2</td>
<td>Eye Diagrams from Slot 8 to Slot 1</td>
<td>802</td>
</tr>
<tr>
<td>27.7.3</td>
<td>Eye Diagrams from Slot 7 to Slot 1</td>
<td>802</td>
</tr>
<tr>
<td>27.8</td>
<td>Summary and Conclusions</td>
<td>803</td>
</tr>
<tr>
<td>27.9</td>
<td>Exercises</td>
<td>804</td>
</tr>
</tbody>
</table>

Part 6 Emerging Protocols and Technologies 807

Chapter 28 Electrical Optical Circuit Board (EOCB) 809

- 28.1 The Photonic PCB Industry and Development Programs 809
- 28.2 Optoelectronic Printed Circuits Based on HDI-Microvia Technology 810
 - 28.2.1 Benefits of HDI 811
 - 28.2.2 Microvia Technologies 811
 - 28.2.3 Use of Microvias in PCBs 812
 - *Better Electrical Performance/Signal Integrity* 812
 - *Improved RF/EMI/ESD* 812
 - 28.2.4 Photonics and Electrical Performance 812
- 28.3 Photonics and Waveguides 813
 - 28.3.1 Optical Waveguide Materials 815
 - 28.3.2 3D Fabrication Techniques 817
 - *Terahertz Photonics’ TrueMode Backplane* 818
 - *Electrical Optical Circuit Board* 819
 - *PolyGuide* 821
 - *TOPCat* 823
 - 28.3.3 New Components 824
 - 28.3.4 3D Assembly Techniques 825
 - 28.3.5 NTT, University of Texas, and JIEP 825
- 28.4 Conclusion 827
- 28.5 Exercises 828
Chapter 29 RapidIO

29.1 RapidIO: The Interconnect Architecture for High-Performance Embedded Systems 829
29.2 RapidIO Is Now an International Standard 830
29.3 Embedded System Development 830
 29.3.1 Why RapidIO? 831
 29.3.2 Interconnect Landscape 832
 29.3.3 Where Will It Be Used? 833
 29.3.4 Philosophy 835
29.4 RapidIO Protocol Overview 836
 29.4.1 Packets and Control Symbols 836
 29.4.2 Packet Format 837
 29.4.3 Transaction Formats and Types 838
 29.4.4 Message Passing 839
 29.4.5 Globally Shared Memory 840
 29.4.6 Future Extensions 840
 29.4.7 Flow Control 841
29.5 Physical Interface 842
 29.5.1 Parallel Electrical Interface 842
 29.5.2 The Serial RapidIO Controller 843
 29.5.3 Link Protocol 843
 29.5.4 Enhanced Flow Control 844
 29.5.5 PCS and PMA Layers 844
 29.5.6 Electrical Interface 845
29.6 Maintenance and Error Management 845
 29.6.1 Maintenance 845
 29.6.2 System Discovery 845
 29.6.3 Error Coverage 846
 29.6.4 Error Recovery 846
29.7 Performance 846
 29.7.1 Packet Structures 846
 29.7.2 Source Routing and Concurrency 847
 29.7.3 Packet Overhead 847
 29.7.4 Bandwidth 847
 29.7.5 Operation Latency 849
29.8 Summary 849
29.9 Exercises 849
Chapter 30 PCI Express and ExpressCard

30.1 PCI Express as Next-Generation I/O
30.2 PCI Express Architecture Overview
30.3 PCI Express Architecture
 30.3.1 Physical Layer
 30.3.2 Link Layer
 30.3.3 Transaction Layer
 30.3.4 Software Layers
 30.3.5 Mechanical Form Factors
 ExpressCard
30.4 Development Timeline
30.5 Summary
30.6 Exercises

Part 7 Lab and Test Instrumentation

Chapter 31 Electrical and Optical Test Equipment

31.1 Oscilloscopes
 31.1.1 Classes of Oscilloscopes — Real-Time vs. Equivalent-Time
 31.1.2 Real-Time Oscilloscopes
 31.1.3 Equivalent-Time Oscilloscopes
31.2 Bit Error Ratio Testers (BERTs)
31.3 Pulse Generators
31.4 Jitter Analyzers
31.5 Logic Analyzers
31.6 Characterizing Optical Systems
 31.6.1 Optical Spectrum Analyzer (OSA)
 31.6.2 Photodetection Using Equivalent-Time Oscilloscope
 31.6.3 Optical Modulation Amplitude (OMA) and Extinction Ratio
 31.6.4 Power Meters
 31.6.5 Characterizing Fiber Properties
 31.6.6 Optical Receiver Sensitivity
 31.6.7 Optical Amplifiers
 31.6.8 Multi-Wavelength Meter
 31.6.9 Reference Receiver
31.7 Test Equipment Specifications
31.8 Exercises