Appendix

For the convenience of the reader, let us collect basic material on the following topics:

• notation,
• physical units, the Planck system, and the energetic system of units,
• the Gaussian system of units and the Heaviside system, and
• the method of dimensional analysis – a magic wand of physicists.

A comprehensive table on the units of the most important physical quantities can be found at the end of the Appendix on page 967.

A.1 Notation

Sets and mappings. The abbreviation ‘iff’ stands for ‘if and only if’. To formulate definitions, we use the symbol ‘:=’. For example, we write

\[f(x) := x^2 \]

iff the value \(f(x) \) of the function \(f \) at the point \(x \) is equal to \(x^2 \), by definition.

The symbol \(U \subseteq V \) (resp. \(U \subset V \)) means that \(U \) is a subset (resp. a proper subset) of \(V \). This convention resembles the symbols \(x \leq y \) (resp. \(x < y \)) for real numbers. A map

\[f : X \rightarrow Y \]

sends each point \(x \) living in the set \(X \) to an image point \(f(x) \) living in the set \(Y \). The set \(X \) is also called the domain of definition, \(\text{dom}(f) \), of the map \(f \). By definition, the image, \(\text{im}(f) \), of the map \(f \) is the set of all image points \(f(x) \). Furthermore, the set

\[f(U) := \{ f(x) : x \in U \} \]

is called the image of the set \(U \) by the map \(f \). In other words, by definition, the set \(f(U) \) contains precisely all the points \(f(x) \) with the property that \(x \) is an element of the set \(U \). The set

\[f^{-1}(V) := \{ x \in X : f(x) \in V \} \]

is called the pre-image of the set \(V \) by the map \(f \).

• The map \(f \) is called surjective iff each point of the set \(Y \) is an image point. In this case, we also say that \(f \) maps the set \(X \) ‘onto’ the set \(Y \). The French word ‘sur’ means ‘onto’.
• The map \(f \) is called injective iff \(x_1 \neq x_2 \) always implies \(f(x_1) \neq f(x_2) \). Such maps are also called ‘one-to-one’.

E. Zeidler, Quantum Field Theory I: Basics in Mathematics and Physics, © Springer-Verlag Berlin Heidelberg 2006, Corrected 2nd printing 2009
The map \(f \) is called \textit{bijective} iff it is both surjective and injective. Precisely in this case, the inverse map \(f^{-1} : Y \to X \) exists.

For each given point \(y \) in the set \(Y \), consider the equation
\[
\begin{align*}
f(x) &= y, \\
x &\in X,
\end{align*}
\] (A.1)
that is, we are looking for a solution \(x \) in the set \(X \). Observe that the map \(f \) is surjective (resp. bijective) iff the equation (A.1) has always at least one (resp. precisely one) solution. The map \(f \) is injective iff the equation has always at most one solution.

Inverse map. If the map \(f : X \to Y \) is bijective, then the inverse map \(f^{-1} : Y \to X \) is defined by
\[
f^{-1}(y) := x \iff f(x) = y.
\]

Sets of numbers. The symbol \(\mathbb{K} \) always stands either for the set \(\mathbb{R} \) of real numbers or the set \(\mathbb{C} \) of complex numbers. The real number \(x \) is called positive, negative, nonnegative, non-positive iff \(x > 0 \), \(x < 0 \), \(x \geq 0 \), \(x \leq 0 \), respectively. The symbols
\[
\mathbb{R}^x, \quad \mathbb{R}>, \quad \mathbb{R}<, \quad \mathbb{R}\geq, \quad \mathbb{R}\leq
\]
denote the set of nonzero real numbers, positive real numbers, negative real numbers, nonnegative real numbers, non-positive real numbers, respectively. Concerning the sign of a real number, we write \(\text{sgn}(x) := 1, -1, 0 \) if \(x > 0 \), \(x < 0 \), \(x = 0 \), respectively.

For a given complex number \(z = x + yi \), we introduce both the conjugate complex number \(z^\dagger := x - yi \) and the modulus
\[
|z| := \sqrt{zz^\dagger} = \sqrt{x^2 + y^2}.
\]

The real (resp. imaginary) part of \(z \) is denoted by \(\Re(z) := x \) (resp. \(\Im(z) := y \)). The definition of the principal argument, \(\arg(z) \), of the complex number \(z \) can be found on page 211. Traditionally,
- the symbol \(\mathbb{Z} \) denotes the set of integers \(0, \pm 1, \pm 2, \ldots \),
- the symbol \(\mathbb{N} \) denotes the set of nonnegative integers \(0, 1, 2, \ldots \) (also called natural numbers),
- the symbol \(\mathbb{N}^\times \) denotes the set of positive integers \(1, 2, \ldots \), and
- the symbol \(\mathbb{Q} \) denotes the set of rational numbers.

For closed, open, and half-open intervals, we use the notation
\[
[a, b] := \{ x \in \mathbb{R} : a \leq x \leq b \}, \quad]a, b[:= \{ x \in \mathbb{R} : a < x < b \},
\]
and \([a, b] := \{ x \in \mathbb{R} : a < x \leq b \} \), as well as \([a, b] := \{ x \in \mathbb{R} : a \leq x < b \} \).

The Landau symbols. Around 1900 the following symbols were introduced by the number theorist Edmund Landau (1877–1938). We write
\[\text{For the closed half-line } \mathbb{R}_{\geq}, \text{ one also uses the symbol } \mathbb{R}_{+}.
\]
\[\text{For the set } \mathbb{N}, \text{ one also uses the symbol } \mathbb{Z}_{\geq}.
\]
A.1 Notation 949

\[f(x) = o(g(x)) \quad \text{as} \quad x \to a \]

iff \(f(x)/g(x) \to 0 \) as \(x \to a \). For example, \(x^2 = o(x) \) as \(x \to 0 \). The symbol

\[f(x) = O(g(x)) \quad \text{as} \quad x \to a \quad \text{(A.2)} \]

tells us that \(|f(x)| \leq \text{const} \ |g(x)| \) in a sufficiently small, open neighborhood of the point \(x = a \). For example, \(2x = O(x) \) as \(x \to 0 \). We write

\[f(x) \simeq g(x), \quad x \to a \]

iff \(f(x)/g(x) \to 1 \) as \(x \to a \). For example,

\[\sin x \simeq x, \quad x \to 0. \]

Relativistic physics. In an inertial system, we set

\[x^1 := x, \quad x^2 := y, \quad x^3 := z, \quad x^0 := ct \]

where \(x, y, z \) are right-handed Cartesian coordinates, \(t \) is time, and \(c \) is the velocity of light in a vacuum. Generally,

- Latin indices run from 1 to 3 (e.g., \(i, j = 1, 2, 3 \)), and
- Greek indices run from 0 to 3 (e.g., \(\mu, \nu = 0, 1, 2, 3 \)).

In particular, we use the Kronecker symbols

\[\delta_{ij} = \delta^{ij} = \delta^i_j := \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{if } i \neq j, \end{cases} \quad \text{(A.3)} \]

and the Minkowski symbols

\[\eta_{\mu\nu} = \eta^{\mu\nu} := \begin{cases} 1 & \text{if } \mu = \nu = 0, \\ -1 & \text{if } \mu = \nu = 1, 2, 3, \\ 0 & \text{if } \mu \neq \nu. \end{cases} \quad \text{(A.4)} \]

Einstein’s summation convention. In the Minkowski space-time, we always sum over equal upper and lower Greek (resp. Latin) indices from 0 to 3 (resp. from 1 to 3). For example, for the position vector, we have

\[x = x^i e_i := \sum_{j=1}^3 x^j e_j, \]

where \(e_1, e_2, e_3 \) are orthonormal basis vectors of a right-handed orthonormal system. Moreover,

\[\eta_{\mu\nu} x^\nu := \sum_{\nu=0}^3 \eta_{\mu\nu} x^\nu. \]

Greek indices are lowered and lifted with the help of the Minkowski symbols. That is,

\[x_\mu := \eta_{\mu\nu} x^\nu, \quad x^\mu = \eta^{\mu\nu} x_\nu. \]

Hence

\[x_0 = x^0, \quad x_j = -x^j, \quad j = 1, 2, 3. \]
For the indices $\alpha, \beta, \gamma, \delta = 0, 1, 2, 3$, we introduce the antisymmetric symbol $\epsilon^{\alpha\beta\gamma\delta}$ which is normalized by

$$\epsilon^{0123} := 1,$$

(A.5)

and which changes sign if two indices are transposed. In particular, $\epsilon^{\alpha\beta\gamma\delta} = 0$ if two indices coincide. For example, $\epsilon^{0213} = -1$ and $\epsilon^{0113} = 0$. Lowering of indices yields $\epsilon_{\alpha\beta\gamma\delta} := -\epsilon^{\alpha\beta\gamma\delta}$. For example, $\epsilon_{0123} := -1$.

The Minkowski metric. Unfortunately, there exist two different conventions in the literature, namely, the so-called west coast convention (W) which uses the following Minkowski metric,

$$\eta_{\mu\nu} x^\mu x^\nu = c^2 t^2 - x^2 - y^2 - z^2,$$

(A.6)

and the east coast convention (E) based on $-c^2 t^2 + x^2 + y^2 + z^2$. (This refers to the east and west coast of the United States of America.) From the mathematical point of view, the east coast convention has the advantage that there does not occur any sign change when passing from the Euclidean metric

$$x^2 + y^2 + z^2$$

to the Minkowski metric. From the physical point of view, the west coast convention has the advantage that the Minkowski square of the momentum-energy 4-vector $(p, E/c)$ is positive,

$$\eta_{\mu\nu} p^\mu p^\nu = \frac{E^2}{c^2} - p^2 = m_0^2 c^2.$$

(A.7)

Here, m_0 denotes the rest mass of the particle. Since most physicists and physics textbooks use the west coast convention, we will follow this tradition, which dates back to Einstein’s papers, Dirac’s 1930 monograph Foundations of Quantum Mechanics and Feynman’s papers. Concerning elementary particles, we use the same terminology as in the standard textbook by Peskin and Schroeder (1995). One can easily pass from our convention to the east coast convention by using the replacements

$$\eta_{\mu\nu} \mapsto -\eta_{\mu\nu}, \quad \gamma^\mu \mapsto -i\gamma^\mu$$

for the Minkowski metric and the Dirac-Pauli matrices, γ^μ, from the Dirac equation (A.20), respectively.\(^{11}\)

A.2 The International System of Units

The ultimate goal of physicists is to measure physical quantities in physical experiments. To this end, physicists have to compare the quantity under consideration with appropriate standard quantities. For example, the measurement of the length of a distance can be obtained by comparing the length with the standard length m (meter). This procedure leads to systems of physical units.

The SI system. In the international system of units, SI (for Système International in French), the following basic units are used:

\(^{11}\) For example, the east coast convention is used in Misner, Thorne, and Wheeler (1973), and in Weinberg (1995).
Prefixes in the SI system

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Symbol</th>
<th>Corresponding Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>deci</td>
<td>d</td>
<td>10^{-1}</td>
</tr>
<tr>
<td>centi</td>
<td>c</td>
<td>10^{-2}</td>
</tr>
<tr>
<td>milli</td>
<td>m</td>
<td>10^{-3}</td>
</tr>
<tr>
<td>micro</td>
<td>μ</td>
<td>10^{-6}</td>
</tr>
<tr>
<td>nano</td>
<td>n</td>
<td>10^{-9}</td>
</tr>
<tr>
<td>pico</td>
<td>p</td>
<td>10^{-12}</td>
</tr>
<tr>
<td>femto</td>
<td>f</td>
<td>10^{-15}</td>
</tr>
<tr>
<td>deka</td>
<td>D</td>
<td>10^1</td>
</tr>
<tr>
<td>hecto</td>
<td>H</td>
<td>10^2</td>
</tr>
<tr>
<td>kilo</td>
<td>K</td>
<td>10^3</td>
</tr>
<tr>
<td>mega</td>
<td>M</td>
<td>10^6</td>
</tr>
<tr>
<td>giga</td>
<td>G</td>
<td>10^9</td>
</tr>
<tr>
<td>peta</td>
<td>P</td>
<td>10^{12}</td>
</tr>
<tr>
<td>tera</td>
<td>T</td>
<td>10^{15}</td>
</tr>
<tr>
<td>femto</td>
<td>f</td>
<td>10^{-15}</td>
</tr>
</tbody>
</table>

- length: m (meter),
- time: s (second),
- energy: J (Joule),
- electric charge: C (Coulomb),
- temperature: K (Kelvin).

Each physical quantity q can be uniquely represented as

$$q = q_{SI} \cdot m^\alpha s^\beta J^\gamma C^\mu K^\nu.$$ \hspace{1cm} (A.8)

Here, q_{SI} is a real number, and the exponents $\alpha, \beta, \gamma, \mu, \nu$ are rational numbers. Physicists say that the physical quantity q has the dimension

$$(\text{length})^\alpha (\text{time})^\beta (\text{energy})^\gamma (\text{electric charge})^\mu (\text{temperature})^\nu.$$

Let us consider a few examples.

- The unit of mass is the kilogram, kg := Js²m⁻².
- The unit of force is the Newton, N = Jm⁻¹.
- The unit of electric current strength is the Ampere, A := Cs⁻¹.

The physical dimensions of the most important physical quantities in the SI system can be found in Table A.4 on page 967. Instead of meter one also uses kilometer, nanometer, femtometer, and so on, which corresponds to

$$1000 \text{m}, \quad 10^{-9} \text{m}, \quad 10^{-15} \text{m},$$

respectively (see Table A.1).

The universal character of the SI system. Unfortunately, for historical reasons, there exist many different systems of units used by physicists. In what follows we want to help the reader to understand the relations between the different systems. Let us explain the following.

If one knows the physical dimension of some quantity in the SI system, then one can easily pass to every other system used in physics.

In particular, we will discuss

- the natural SI system,
- the Planck system, and
- the energetic system.
The Planck system has the advantage that the fundamental physical constants $G, \hbar, c, \varepsilon_0, \mu_0, k$ do not appear explicitly in the basic equations (e.g., in elementary particle physics and cosmology). In this system, all the physical quantities are dimensionless.

The energetic system is mainly used in elementary particle physics. In this system, all of the physical quantities are measured in powers of energy, and the physical constants $\hbar, c, \varepsilon_0, \mu_0, k$ do not appear explicitly.

A.3 The Planck System

All the systems of units which have hitherto been employed owe their origin to the coincidence of accidental circumstances, inasmuch as the choice of the units lying at the base of every system has been made, not according to general points of view, but essentially with reference to the special needs of our terrestrial civilization. . .

In contrast with this it might be of interest to note that we have the means of establishing units which are independent of special bodies or substances. The means of determining the units of length, mass, and time are given by the action constant \hbar, together with the magnitude of the velocity of propagation of light in a vacuum c, and that of the constant of gravitation G. . . These quantities must be found always the same, when measured by the most widely differing intelligences according to the most widely differing methods.

Max Planck, 1906

The Theory of Heat Radiation\(^\text{12}\)

Fundamental constants. There exist the following universal constants in nature:

- G (gravitational constant),
- c (velocity of light in a vacuum),
- h (Planck’s quantum of action),
- ε_0 (electric field constant of a vacuum),
- k (Boltzmann constant).

The explicit numerical values of these fundamental constants can be found in Table A.3 on page 965. We also use the constants

- $\hbar := h/2\pi$ (reduced Planck’s quantum of action), and
- $\mu_0 := 1/\varepsilon_0 c^2$ (magnetic field constant of vacuum).

Basic laws in physics. These universal constants enter the following six basic laws of physics.

(i) Einstein’s equivalence between rest mass m_0 and rest energy E of a particle: $E = m_0 c^2$.

(ii) Energy E of a photon with frequency ν: $E = h\nu$.

(iii) Gravitational force F between two masses M_1 and M_2 at distance r:

$$F = \frac{GM_1 M_2}{r^2}.$$

Table A.2. SI system

<table>
<thead>
<tr>
<th>1 m = 0.63 · 10^{35} m</th>
<th>1 m = l = 1.6 · 10^{-35} m</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 s = 0.19 · 10^{44} s</td>
<td>1 s = 5.3 · 10^{-44} s</td>
</tr>
<tr>
<td>1 J = 0.51 · 10^{-9} J</td>
<td>1 J = 1.97 · 10^{9} J</td>
</tr>
<tr>
<td>1 kg = 0.48 · 10^{8} kg</td>
<td>1 kg = 2.1 · 10^{-8} kg</td>
</tr>
<tr>
<td>1 C = 0.19 · 10^{19} C</td>
<td>1 C = 5.34 · 10^{-19} C</td>
</tr>
<tr>
<td>1 K = 0.71 · 10^{-32} K</td>
<td>1 K = 1.4 · 10^{32} K</td>
</tr>
</tbody>
</table>

1 GeV = 10^{9} eV = 1.602 · 10^{-10} J
1 GeV/c^2 = 1.78 · 10^{-27} kg

(iv) Electric force F between two electric charges Q_1 and Q_2 at distance r:

$$F = \frac{Q_1 Q_2}{4 \pi \varepsilon_0 r^2}.$$

(v) Magnetic force F between two parallel electric currents of strength J_1 and J_2 in a wire of length L at distance r:

$$F = \frac{\mu_0 L J_1 J_2}{2\pi r}.$$

(vi) Mean energy E corresponding to one degree of freedom in a many-particle system at temperature T: $E = kT$.

In the SI system, the unit of electric current, called an ampere, is defined in such a way that the magnetic field constant of a vacuum is given by

$$\mu_0 = 4\pi \cdot 10^{-7} \frac{N}{A^2}.$$

By Table A.1 on prefixes, 1 MeV = 10^6 eV (mega electron volt).

Natural SI units. The five natural constants $G, c, \hbar, \varepsilon_0,$ and k can be used to systematically replace the SI units m, s, J, C, K by the following so-called natural SI units:

- Planck length: $m := l := \sqrt{\hbar G/c^3}$,
- Planck time: $s := l/c$,
- Planck energy: $J := \hbar c/l$,
- Planck charge: $C := \sqrt{\hbar \varepsilon_0}$,
- Planck temperature: $K := \hbar c/k l$.

Parallel to $kg = Js^2/m^2$, let us introduce the Planck mass

$$kg := Js^2/m^2 = \hbar/c l.$$

The numerical values can be found in Table A.2. From (A.8) we obtain the representation

$$q = q_{Pl} \cdot m^\alpha s^\beta J^\gamma C^\mu K^\nu$$

(A.9)

of the physical quantity q in natural SI units. Hence
This implies
\[q = q_{Pl} \cdot l^A \left(\frac{c}{l} \right)^{\beta} \left(\frac{\hbar}{c} \right)^{\gamma} (ch\varepsilon_0)^{\mu/2} \left(\frac{\hbar c}{k} \right)^{\nu}. \]

Explicitly,\n\[A = \alpha + \beta - \gamma - \nu, \quad B = \gamma + \nu - \beta + \mu/2, \quad C = \gamma + \nu + \mu/2, \]
and \(D = \mu/2, \quad E = -\nu. \)

The Planck system of units. In this system, we set
\[l = c = \hbar = \varepsilon_0 = k := 1. \]

In particular, for the gravitational constant, this implies \(G = 1. \) By (A.10), \(q = q_{Pl}. \)

Example 1. For the proton, we get\n\[E = 0.77 \cdot 10^{-19} \text{ J} = 1.5 \cdot 10^{-10} \text{ J} = 0.938 \text{ GeV} \quad \text{(rest energy)} \]
along with\n\[M = E/c^2 = 0.77 \cdot 10^{-19} \text{ kg} = 1.67 \cdot 10^{-27} \text{ kg} \quad \text{(rest mass)} \]
and\n\[e = \sqrt{4\pi\alpha} \quad C = 0.30 \quad C = 1.6 \cdot 10^{-19} \text{ C} \quad \text{(electric charge)}. \]

Therefore, \(E_{Pl} = M_{Pl} = 0.77 \cdot 10^{-19}, \) and \(e_{Pl} = 0.30. \) In the Planck system, this implies\n\[E = M = 0.77 \cdot 10^{-19} \quad \text{and} \quad e = 0.30. \]

Example 2. Consider the Einstein relation\n\[E = m_0 c^2 \]
between the rest mass \(m_0 \) and the rest energy \(E \) of a free relativistic particle in the SI system. Letting \(c := 1, \) we obtain the corresponding equation\n\[E = m_0 \]
in the Planck system. Here, \(E = E_{Pl} \) and \(m_0 = M_{Pl}. \) In order to go back from (A.13) to the SI system, one has to observe that\n\[E = E_{Pl} \cdot J, \quad m_0 = M_{Pl} \cdot J s^2 m^{-2} \]
in natural SI units, by Table A.4 on page 967. Hence

\[E = E_{\text{Pl}} \frac{\hbar c}{l}, \quad m_0 = M_{\text{Pl}} \frac{\hbar}{lc}. \]

Thus, we have to replace \(E \) and \(m_0 \) by

\[\frac{E l}{\hbar c} \quad \text{and} \quad \frac{m_0 lc}{\hbar}, \]

respectively. This way, we pass over from (A.13) to (A.12).

Example 3. In the SI system, the Maxwell equations in a vacuum are given by

\[
\begin{align*}
\text{div } D & = \varrho, \\
\text{div } B & = 0, \\
\text{curl } E & = -\dot{B}, \\
\text{curl } H & = \dot{D} + j
\end{align*}
\]

along with \(D = \varepsilon_0 E \) and \(B = \mu_0 H \). Moreover, \(c^2 = 1/\varepsilon_0 \mu_0 \). Alternatively,

\[
\begin{align*}
\varepsilon_0 \text{ div } E & = \varrho, \\
\text{div } B & = 0, \\
\text{curl } E & = -\dot{B}, \\
c^2 \text{ curl } B & = \dot{E} + \mu_0 \frac{c^2}{\varepsilon_0} j.
\end{align*}
\]

Letting \(\varepsilon_0 = \mu_0 = c := 1 \), we obtain the corresponding Maxwell equations in the Planck system:

\[
\begin{align*}
\text{div } E & = \varrho, \\
\text{div } B & = 0, \\
\text{curl } E & = -\dot{B}, \\
\text{curl } B & = \dot{E} + j.
\end{align*}
\]

In order to transform equation (A.16) back to the SI system, we replace the quantities \(x, t, E, B, \varrho, j \) by

\[
\begin{align*}
x/m, & \quad t/s, & \quad E \cdot mC & \quad J, & \quad B \cdot m^2/sJ, & \quad \varrho \cdot m^3/C, & \quad j \cdot m^2/Cs,
\end{align*}
\]

respectively, according to Table A.4 on page 967. In addition, the partial derivatives \(\partial/\partial x^j, \partial/\partial t \) have to be replaced by

\[m \cdot \frac{\partial}{\partial x^j}, \quad s \cdot \frac{\partial}{\partial t}, \]

respectively. Finally, we set

\[m := l, \quad s := \frac{l}{c}, \quad C := (c\varepsilon_0)^{1/2}, \quad J := \frac{\hbar c}{l}. \]

This way, we get (A.14). In fact, for example, the first Maxwell equation \(\text{div } E = \varrho \) from (A.16) means explicitly

\[\partial_j E^j = \varrho, \]

in Cartesian coordinates. Here, \(\partial_j = \partial/\partial x^j \), and we sum over \(j = 1, 2, 3 \). By (A.17), this is transformed into the equation

\[\beta \cdot \partial_j E^j = \varrho, \]

where \(\beta := C^2/Jm \). Since \(\beta = c\hbar \varepsilon_0/c\hbar = \varepsilon_0 \), we obtain \(\varepsilon_0 \text{ div } E = \varrho \). This is the first Maxwell equation from (A.15).

Example 4. In the SI system, the Schrödinger equation reads as
\[i\hbar \frac{\partial \psi}{\partial t} = \frac{\hbar^2}{2m_0} \Delta \psi + U \psi. \quad (A.18) \]

Here, \(m_0 \) and \(U \) denote the mass of the particle and the potential energy, respectively. Letting \(\hbar = 1 \), we arrive at the Schrödinger equation

\[i \frac{\partial \psi}{\partial t} = \frac{\Delta \psi}{2m_0} + U \psi \quad (A.19) \]

in the Planck system. In a Cartesian \((x, y, z)\)-system, the Laplacian is defined by

\[\Delta := -\frac{\partial^2}{\partial x^2} - \frac{\partial^2}{\partial y^2} - \frac{\partial^2}{\partial z^2}. \]

Note that our sign convention coincides with the use of the Laplacian in modern differential geometry (Riemannian geometry) and string theory.\(^\text{13}\)

In order to go back from the Planck system to the SI system,\(^\text{14}\) we replace the quantities \(x, t, U, m_0, \psi \) by

\[\frac{x}{m}, \frac{t}{s}, \frac{U}{J}, m_0 \cdot \frac{m^2}{Js^2}, \psi \cdot m^{3/2}, \]

respectively. The Laplacian contains spatial derivatives of second order. Thus, the Laplacian \(\Delta \) and the partial time derivative \(\partial / \partial t \) have to be replaced by

\[m^2 \cdot \Delta, \quad s \cdot \frac{\partial}{\partial t}. \]

Consequently, equation (A.19) is transformed into

\[i Js \psi_t = \frac{(Js)^2}{2m_0} \Delta \psi + U \psi. \]

Since \(Js = \hbar \), we get (A.18).

Example 5. Let us start with the Dirac equation

\[i\gamma^\mu \partial_\mu \psi = m_0 \psi \quad (A.20) \]

for the relativistic electron of rest mass \(m_0 \) formulated in the Planck system. Here, \(\partial_\mu = \partial / \partial x^\mu \). Recall that we sum over \(\mu \) from 0 to 3, by Einstein’s summation convention. The definition of the Dirac–Pauli matrices \(\gamma^0, \gamma^1, \gamma^2, \gamma^3 \) can be found on page 791. In order to pass over to the SI system, we replace the quantities \(x^\mu, m_0, \psi \) by

\[\frac{x^\mu}{m}, \quad m_0 \cdot \frac{m^2}{Js^2}, \quad m^{3/2} \cdot \psi, \]

respectively, according to Table A.4 on page 967. Note that the dimension of the wave function \(\psi \) in the SI system is the same as in the case of the Schrödinger equation. Hence

\[i\gamma^\mu \partial_\mu \psi = \sigma m_0 \psi \]

13 In classic textbooks, one has to replace \(\Delta \) by \(-\Delta \).

14 The normalization condition \(\int_{\mathbb{R}^3} \psi \psi^* \, d^3x = 1 \) implies that the wave function \(\psi \) has the dimension \(m^{-3/2} \) in the SI system.
where \(\sigma := m/s^2 J \). Since \(\sigma = c/\hbar \), in the SI system the Dirac equation reads as
\[
[i \hbar \gamma^\mu \partial_\mu \psi = m_0 c \psi.]
\] (A.21)

The quantity \(\lambda_e := h/cm_0 \) is called the Compton wave length of the electron.

Classical systems of units. In the context of the Maxwell equations, physicists frequently use the Gaussian system or the Heaviside system, for historical reasons. Let us explain the relation of these two systems to the SI system. The idea is to measure all of the physical quantities by meter, second, kilogram, and Kelvin. That is, we do not introduce a specific unit for electric charge. In the Gaussian system, the electric force \(F \) between two electric charges \(Q_1 \) and \(Q_2 \) at distance \(r \) (Coulomb law) is given by
\[
F = \frac{Q_1 Q_2}{r^2}.
\]
Moreover, we use the Gaussian definition of the magnetic field
\[
H_G := c B.
\]
This definition is motivated by the fact that the electric field \(E \) and the Gaussian magnetic field \(H_G \) possess the same physical dimension. In the Heaviside system, we use the Coulomb law
\[
F = \frac{Q_1 Q_2}{4\pi r^2}.
\]
In contrast to the Gaussian system from the 1830s, the Heaviside system from the 1880s has the advantage that the factor \(4\pi \) does not appear in the Maxwell equations.

The Heaviside system of units. We use the SI system and set
\[
\varepsilon_0 := 1.
\]
In the SI system, each physical quantity \(q \) can be written as
\[
q = q_{\text{Pl}} \cdot l^A c^B h^C \varepsilon^D k^E,
\]
by (A.10) on page 954. Letting \(\varepsilon_0 := 1 \), we get
\[
q = q_{\text{Pl}} \cdot l^A c^B h^C k^E,
\]
in the Heaviside system. Consequently,
\[
q = q_H \cdot m^a s^b k^c K^d.
\]
That is, each physical quantity can be described by powers of meter, second, kilogram, and Kelvin. In the Heaviside system, the Maxwell equations read as follows:
\[
\begin{align*}
\text{div } E &= \varrho, & \text{div } H_G &= 0, \\
\text{curl } E &= -\frac{1}{c} \frac{\partial H_G}{\partial t}, & \text{curl } H_G &= \frac{1}{c} \frac{\partial E}{\partial t} + \frac{j}{c}.
\end{align*}
\] (A.22)
To obtain this, start with the Maxwell equations in the SI system. By (A.15) along with \(c^2 = 1/\varepsilon_0 \mu_0 \),
\[
\begin{align*}
\varepsilon_0 \text{ div } E &= \varrho, & \text{div}(c B) &= 0, \\
\text{curl } E &= -\frac{1}{c} \frac{\partial (c B)}{\partial t}, & \text{curl}(c B) &= \frac{1}{c} \frac{\partial E}{\partial t} + \frac{j}{\varepsilon_0 c}.
\end{align*}
\]
Letting $\varepsilon_0 := 1$ and $H_G := \alpha \mathbf{B}$, we get (A.22).

The Gaussian system of units. Using the rescaling

$$E \Rightarrow \frac{E}{4\pi}, \quad H_G \Rightarrow \frac{H_G}{4\pi},$$

the Heaviside system passes over to the Gaussian system. In particular, the Maxwell equations in the Gaussian system read as follows:

$$\operatorname{div} E = 4\pi \varrho, \quad \operatorname{div} H_G = 0,$$

$$\operatorname{curl} E = -\frac{1}{c} \frac{\partial H_G}{\partial t}, \quad \operatorname{curl} H_G = \frac{1}{c} \frac{\partial E}{\partial t} + \frac{4\pi j}{c}. \quad (A.23)$$

Observe that the variants (A.22) and (A.23) of the Maxwell equations differ by the factor 4π. The Gaussian system is used in the 10-volume standard textbook on theoretical physics by Landau and Lifshitz (1982).

A.4 The Energetic System

The most important physical quantity in elementary particle physics is given by the energy of a particle accelerator. Therefore, particle physicists like to use energy as basic unit. Let us discuss this. In the SI system, an arbitrary physical quantity can be written as

$$q = q_{pl} \cdot l^A c^B h^C \varepsilon_0^D k^E,$$

by (A.10). In the energetic system, we set15

$$(c = h = \varepsilon_0 = k := 1).$$

Hence

$$q = q_{pl} \cdot l^A.$$

Consequently, each physical quantity has the physical dimension of some power of length. In particular, for energy E we get

$$E = E_{pl} \cdot l^{-1} hc,$$

in the SI system. Hence

$$E = E_{pl} \cdot l^{-1},$$

in the energetic system. That is, energy has the physical dimension of inverse length.

Conversely, length has the physical dimension of inverse energy in the energetic system of units.

In terms of natural SI units, each physical quantity can be written as

$$q = q_{pl} \cdot m^\alpha s^\beta J^\gamma C^\mu K^\nu.$$

It follows from $c = h = \varepsilon_0 = k := 1$ that

15 In particular, this implies $\mu_0 = 1$. \hfill
This implies
\[q = q v_1 \cdot J^A, \]
where \(A = -\alpha - \beta + \gamma + \nu. \) This way, each physical quantity can be expressed by powers of the Planck energy \(J. \) Using Table A.4 on page 967 along with (A.24), we immediately obtain all the dimensions of important physical quantities in the energetic system. For example, velocity has the dimension
\[v = v_{\text{SI}} \cdot m s^{-1}, \]
in the SI system. Thus, in natural SI units,
\[v = v_{\text{Pl}} \cdot m s^{-1}. \]
In the energetic system \(m = s, \) by (A.24). Hence
\[v = v_{\text{Pl}}, \]
that is, velocity is dimensionless. Note that this follows more simply from the fact that \(c := 1 \) in the energetic system; that is, the velocity of light is dimensionless. Similarly, using the dimensionless quantities \(h = \varepsilon_0 = \mu_0 = k := 1 \) along with the basic physical laws (i)-(vi) on page 952, we encounter the following physical dimensions in the energetic system:

- [mass] = [momentum] = [temperature] = [energy],
- [length] = [time] = [energy]^{-1},
- [cross section] = [area] = [length]^2 = [energy]^{-2},
- [electric charge] = [velocity] = [action] = dimensionless,
- [force] = [electric field] = [magnetic field] = [energy]^2,
- [potential] = [vector potential] = [energy],
- the coupling constants of quantum electrodynamics, quantum chromodynamics, and electroweak interaction are dimensionless.

Since the electric charge and the coupling constants of the Standard Model in particle physics are dimensionless in the energetic system, these quantities are independent of the rescaling of energy.

Examples. The Einstein relation \(E = m_0 c^2 \) reads as
\[E = m_0 \]
in the energetic system, since \(c := 1. \)

The Maxwell equations (A.16), the Schrödinger equation (A.19), and the Dirac equation (A.20) coincide in the Planck system and in the energetic system.

In elementary particle physics, physicists like to use GeV (giga electron volt), where
\[J = 1.98 \cdot 10^{19} \text{ GeV}. \]
This is called the Planck energy. Note that the rest energy of the proton is equal to 0.938 GeV. Consequently, from Table A.2 on page 953, we obtain the following conversion formulas between the SI system and the energetic system:
Depending on the energy scale, physicists also use mega electron volt, MeV. Here, 1 GeV = \(10^3\) MeV.

The physical dimension of cross sections. Observe that

\[\hbar c = 1.97327 \cdot 10^{-13}\, \text{MeV} \cdot \text{m}. \]

This implies

\[m^2 = \left(\frac{\hbar c}{1.97327}\right)^2 \cdot 10^{26}\, (\text{MeV})^{-2}. \]

In the SI system, the cross section \(\sigma\) is measured in \(\text{m}^2\). Setting

\[\hbar = c := 1, \]

we get the cross section in the energetic system measured in \((\text{MeV})^{-2}\). Conversely, the passage from the energetic system to the SI system can be easily obtained by using the replacement

\[\sigma \Rightarrow \sigma \left(\frac{\hbar c}{(\hbar c)^2}\right). \]

In fact, if \(\sigma = a\) in the energetic system, then \(\sigma = (\hbar c)^2 a\) in the SI system.

A.5 The Beauty of Dimensional Analysis

Physicists use the dimensionality of physical quantities in order to get important information. Let us illustrate this by considering three examples: the pendulum, Newton’s gravitational law, and Kolmogorov’s law for turbulence.

The pendulum. Consider a pendulum of length \(l\) and mass \(m\). We are looking for a formula for the period of oscillation, \(T\), of the pendulum. We expect that \(T\) depends on \(l\), \(m\), and the gravitational acceleration \(g\). Thus, we begin with the ansatz

\[T = C \cdot l^\alpha m^\beta g^\gamma \]

where \(C\) is a dimensionless constant. Passing to dimensions we get

\[s = m^\alpha \text{kg}^{\beta} \text{m}^{\gamma} \text{s}^{-2\gamma}. \]

This implies \(\beta = 0\), \(\gamma = -\frac{1}{2}\), and \(\alpha = -\gamma = \frac{1}{2}\), that is,

\[T = C \sqrt{\frac{l}{g}}. \quad (A.25) \]

The constant \(C\) has to be determined from experiment. The explicit solution of the problem via elliptic integrals shows that, for small pendulum motions, equation (A.25) is valid with \(C = 2\pi\).
Newton’s gravitational law. In 1619 Kepler discovered empirically that the motion of a planet satisfies the law

\[\frac{T^2}{a^3} = \text{const} \]

where \(T \) is the period of revolution, and \(a \) is the great semi-axis of the elliptic orbit. In order to guess Newton’s gravitational law from this information, let us make the ansatz

\[m\ddot{x} = C|x|^\mu x \]

for the motion \(x = x(t) \) of the planet. Here, \(m \) is the mass of the planet, and \(C \) is a constant. We want to show that \(\mu = -3 \) is the only natural choice. To this end, consider the rescaled motion \(y(t) := \alpha x(\beta t) \). Then

\[m\ddot{y} = \beta^2 \alpha^{-\mu} C|y|^\mu y. \]

We postulate that the equation of motion and the third Kepler law are independent of the rescaling. This means that \(\beta^2 \alpha^{-\mu} = 1 \) and

\[(T\beta)^2/(\alpha a)^3 = T^2/a^3. \]

Hence \(\mu = -3 \). Summarizing, we obtain Newton’s gravitational law

\[m\ddot{x} = \frac{C}{|x|^2} \frac{x}{|x|}. \]

The Kolmogorov law for energy dissipation in turbulent flows. It is a typical property of turbulent flow that there exist eddies of different diameters \(\lambda \), where \(\lambda_{\text{min}} \leq \lambda \leq \lambda_{\text{max}} \). One may think, for example, of clouds in the air or of nebulas in astronomy. One finds that the large eddies tend to break down into smaller eddies. This way, energy from large eddies flows to smaller eddies. Here, physicists assume that the energy of the smallest eddies with \(\lambda = \lambda_{\text{min}} \) is transformed into heat by friction (energy dissipation). Viscosity is of significance only for small eddies. We define

\[\varepsilon := \frac{\text{loss of energy by dissipation}}{\text{mass} \cdot \text{time}}. \]

This is the crucial physical quantity. Note that \(\varepsilon \) can be measured in experiments; it is equal to the produced heat. Using the method of dimensional analysis, Kolmogorov obtained the law

\[\varepsilon = \int_{\lambda_{\text{min}}}^{\lambda_{\text{max}}} s(\lambda)d\lambda \]

along with the spectral function

\[s(\lambda) := C \left(\frac{\lambda}{\lambda_{\text{min}}} \right)^{\eta \varepsilon^2/3} \frac{1}{\lambda^{7/3}}. \]

Here, \(\eta \) and \(\varrho \) are viscosity and mass density, respectively. The function \(C \) is dimensionless. For values \(\lambda \) near \(\lambda_{\text{min}} \), the function \(C \) can be approximated by a constant. Therefore, physicists speak of Kolmogorov’s 7/3-law. The proof can be found in Zeidler (1986), Vol. IV, p. 514.

It turns out that dimensional analysis represents a magic wand of physicists. In this setting, a minimum of hypotheses provides us a maximum of information.
A.6 The Similarity Principle in Physics

Rescaled SI units. Let us replace the SI units m, s, J, C, K with the rescaled units

\[m_*, s_*, J_*, C_*, K_* \]

where \(m_* = m_+ \cdot m \), \(s_* = s_+ \cdot s \), ..., with the real numbers \(m_+, s_+, \ldots \). Then, each physical quantity \(q \) can be represented as

\[q = q_* \cdot m_\alpha s_\beta J_\gamma C_\mu K_\nu = q_* \cdot [q]. \]

The real number \(q_* \) is called the numerical value of \(q \), and \([q]\) is called the dimension of \(q \) with respect to this system of units. In practice, one chooses \(m_*, s_*, \ldots \) in such a way that the numerical values of the physical quantities are neither too large nor too small. For example, if we want to study thin layers, then it is convenient to use \(m_* := 10^{-9} m = 1 \text{ nm} \) (nanometer). In astronomy, one uses light years for measuring distances, and so on.

The role of small quantities in physics. It is impossible to speak of a small length \(L \) in physics. In fact, if

\[L = 1 \text{ meter}, \]

then passing to a new length scale, we get

\[L = 10^{15} \text{ femtometer}. \]

Therefore, it makes sense to speak about smallness only for dimensionless quantities. For example, choose the radius \(r_E \) of earth and the radius \(r_p \) of a proton. Then the dimensionless ratio

\[\frac{r_p}{r_E} = 6 \cdot 10^{-21} \]

is a small quantity compared with 1.

The experience of physicists shows that two different theories are good approximations of each other if suitable dimensionless quantities are small. Let us consider two crucial examples.

(i) Relativistic physics: Let \(v \) and \(c \) be the velocity of some particle and the velocity of light, respectively. If the dimensionless quotient

\[\frac{v}{c} \]

is sufficiently small, then the relativistic motion of the particle can be described approximately by Newton’s classical mechanics. For example, the relativistic mass

\[m = \frac{m_0}{1 - v^2/c^2} = m_0 \left(1 - \frac{v^2}{2c^2} + o \left(\frac{v^2}{c^2} \right) \right), \quad \frac{v^2}{c^2} \to 0 \]

is approximately equal to the rest mass \(m_0 \) if the quotient \(v/c \) is sufficiently small.

(ii) Quantum mechanics: Let \(S = E(t_1 - t_2) \) be the action for the motion of some particle with constant energy \(E \) during a fixed reasonable time interval \([t_1, t_2]\), say, one hour. If the dimensionless ratio

\[\frac{S}{\hbar} \]

is small, then the quantum motion of the particle can be approximately described by Newton’s classical mechanics.
In (i) and (ii), corrections to classical mechanics can be obtained by perturbation theory if \(v/c \) and \(S/\hbar \) are small. These are the post-Newtonian approximation and the WKB approximation, respectively.

The fundamental similarity principle in physics. We postulate that

Physical processes are described by equations which are invariant under rescaling of units. Explicitly, we demand that the laws of physics can be written in such a way that, in a fixed system of units, they only depend on the dimensionless quotients

\[
\frac{q}{[q]}, \quad \frac{r}{[r]}, \quad \ldots
\]

of all the physical quantities \(q, r, \ldots \).

A special role is played by those physical quantities which are dimensionless in the SI system. We expect that such quantities are related to important physical effects. The experience of physicists confirms this. For example, the so-called fine structure constant

\[
\alpha := \frac{e^2}{4\pi \varepsilon_0 \hbar c} = \frac{1}{137.04}
\]

represents the most important dimensionless quantity that can be constructed from the universal constants. This constant measures the strength of the interaction between electrons, positrons, and photons in quantum electrodynamics. The smallness of \(\alpha \) is responsible for the fact that perturbation theory can be successfully applied to quantum electrodynamics.

Example. Consider the Einstein relation

\[
E = m_0c^2
\]

between rest mass \(m_0 \) and rest energy \(E \) of a particle. In any rescaled SI system,

\[
E = E_s \cdot J_s, \quad m_0 = (m_0)_s \cdot J_s^2 s_s^2 m_s^{-2}, \quad c = c_s \cdot m_s s_s^{-1}
\]

Hence \(E_s = (m_0)_s c_s^2 \). Moreover, \([E] = J_s\), and

\[
[m_0][c]^2 = J_s s_s^2 m_s^{-2} \cdot m_s^2 s_s^{-2} = J_s.
\]

This means that

\[
\frac{E}{[E]} = \frac{m_0 c^2}{[m_0][c]^2}.
\]

Physicists frequently use such dimension tests in order to check the correctness of formulas.

Counterexample. Let \(x \) and \(t \) denote position and time, respectively. The equation

\[
x = \sin t
\]

is not allowed in the SI system, since it is not invariant under the rescaling \(x \Rightarrow \alpha x \) and \(t \Rightarrow \beta t \) for nonzero constants \(\alpha \) and \(\beta \). In contrast to this, the equation

\[
\frac{x}{x_0} = \sin \left(\frac{t}{t_0} \right)
\]

is admissible in any system of units if \(x \) and \(x_0 \) as well as \(t \) and \(t_0 \) possess the same dimensions.
Application to Reynolds numbers in turbulence. The motion of a viscous fluid in a 3-dimensional bounded domain G is governed by the so-called Navier–Stokes equations16

$$\rho v_t - \nu \Delta_x v + \rho (v \nabla_x) v = f - \nabla_x p \quad \text{on} \ G,$$

$$\nabla_x v = 0 \quad \text{on} \ G,$$

$$v = 0 \quad \text{on} \ \partial G.$$

The symbols possess the following physical meaning: v velocity vector, ρ mass density, f force density vector, p pressure, ν viscosity constant, x position vector, and t time. Set $x = X \cdot m_s$, $t = T \cdot s_s$, $v = u \cdot m_s s_s^{-1}$, $\rho = \Omega \cdot J_s s_s^2 m_s^{-5}$ and $f = F \cdot J_s m_s^{-4}$, $p = P \cdot J_s m_s^{-3}$, $\nu = N \cdot J_s m_s^{-3}$, where the coefficients X, T, \ldots are dimensionless. Furthermore, let d and v denote the diameter of the domain G and a typical velocity of the fluid, respectively. Naturally enough, we choose $m_s := d$, $s_s := dv^{-1}$, $J_s := \rho v^2 d^{-3}$.

This way, we obtain the rescaled dimensionless Navier–Stokes equations

$$u_t - \text{Re}^{-1} \Delta_X u + (u \nabla_X) u = F - \nabla_X P \quad \text{on} \ H,$$

$$\nabla_X u = 0 \quad \text{on} \ H,$$

$$u = 0 \quad \text{on} \ \partial H$$

with the dimensionless Reynolds number

$$\text{Re} := \frac{\rho v d}{\nu}.$$

The rescaled domain H is obtained from the original domain G by replacing the points x of G by $d^{-1}x$. Physical experiments show that if the Reynolds number Re is sufficiently large, then turbulence occurs.

The rescaled dimensionless Navier–Stokes equations reflect an important similarity principle in hydrodynamics. Explicitly, if two physical situations in different regions are governed by the same rescaled dimensionless Navier–Stokes equations, then the physics is the same up to suitable similarity transformations.

Discovery of errors in physical computations. Physicists use physical dimensions in order to detect errors in their computations. To explain this with a simple example, suppose that we arrive at the equation

$$p = c^3 m_0$$

after finishing some computation. Here, we use the following notation: p momentum, m_0 particle mass, c velocity of light. We want to check this. In the SI system, we have the following dimensions:

$$[p] = \text{kg} \cdot \text{ms}^{-1}, \quad [m_0] = \text{kg}, \quad [c] = \text{ms}^{-1}.$$

Hence $[p] = [c] \cdot [m_0]$. It follows from $(A.26)$ that $[p] = [c]^3 [m_0]$. This implies $[c]^2 = 1$, which is a contradiction. Consequently, our result $(A.26)$ is wrong. The same argument can be used in the energetic system. However, we now have $[c] = 1$, which does not lead to any contradiction. In other words, the energetic system of units is too weak in order to detect that equation $(A.26)$ is wrong, by checking physical dimensions.

16Navier (1785–1836), Stokes (1819–1903).
Table A.3. Fundamental constants in nature

<table>
<thead>
<tr>
<th>Fundamental constant</th>
<th>SI units</th>
<th>Natural SI units</th>
</tr>
</thead>
<tbody>
<tr>
<td>velocity of light in a vacuum</td>
<td>(c = 2.998 \cdot 10^8 \text{ m/s})</td>
<td>(c = \text{m/s})</td>
</tr>
<tr>
<td>Planck’s action quantum</td>
<td>(h = 6.626 \cdot 10^{-34} \text{ Js}) (h = h/2\pi)</td>
<td>(h = \text{Js})</td>
</tr>
<tr>
<td>gravitational constant</td>
<td>(G = 6.673 \cdot 10^{-11} \text{ m}^5/\text{Js}^4)</td>
<td>(G = \frac{\text{m}^5}{\text{Js}^4} = \frac{l^2 c^3}{\hbar})</td>
</tr>
<tr>
<td>electric field constant</td>
<td>(\varepsilon_0 = 8.854 \cdot 10^{-12} \text{ C}^2/\text{Jm})</td>
<td>(\varepsilon_0 = \frac{\text{C}^2}{\text{Jm}})</td>
</tr>
<tr>
<td>magnetic field constant</td>
<td>(\mu_0 = \frac{1}{\varepsilon_0 c^2} = 4\pi \cdot 10^{-7} \text{ Js}^2/\text{C}^2 \text{m})</td>
<td>(\mu_0 = \frac{\text{Js}^2}{\text{C}^2 \text{m}})</td>
</tr>
<tr>
<td>Boltzmann constant</td>
<td>(k = 1.380 \cdot 10^{-23} \text{ J/K})</td>
<td>(k = \frac{\text{J}}{\text{K}})</td>
</tr>
<tr>
<td>fine structure constant</td>
<td>(\alpha = \frac{e^2}{4\pi c \hbar \varepsilon_0}) (dimensionless)</td>
<td>(\alpha = 1/137.04)</td>
</tr>
<tr>
<td>charge of the proton</td>
<td>(e = 1.602 \cdot 10^{-19} \text{ C})</td>
<td>(e = \sqrt{4\pi \alpha} \text{ C} = 0.30 \text{ C})</td>
</tr>
<tr>
<td>rest energy of the proton</td>
<td>(E_p = 1.5 \cdot 10^{-10} \text{ J}) (= 0.938 \text{ GeV}) (giga electron volt)</td>
<td>(E_p = 0.77 \cdot 10^{-19} \text{ J})</td>
</tr>
<tr>
<td>rest mass of the proton</td>
<td>(m_p = 1.672 \cdot 10^{-27} \text{ kg}) (= 0.938 \text{ GeV}/c^2)</td>
<td>(m_p = 0.77 \cdot 10^{-19} \text{ kg})</td>
</tr>
<tr>
<td>Compton wave length of the proton (\lambda_p = \frac{\hbar}{m_p c})</td>
<td>(\lambda_p = 1.32 \cdot 10^{-15} \text{ m}) (= 1.32 \text{ fm}) (femtometer)</td>
<td>(\lambda_p = 0.83 \cdot 10^{20} \text{ m})</td>
</tr>
<tr>
<td>rest energy of the electron</td>
<td>(E_e = 8.16 \cdot 10^{-14} \text{ J}) (= 0.511 \text{ MeV}) (mega electron volt)</td>
<td>(E_e = E_p/1838.1)</td>
</tr>
</tbody>
</table>
Table A.3. (continued)

<table>
<thead>
<tr>
<th>Property</th>
<th>SI units</th>
<th>Natural SI units</th>
</tr>
</thead>
<tbody>
<tr>
<td>rest mass of the electron</td>
<td>$m_e = 0.91 \cdot 10^{-30}$ kg</td>
<td>$m_e = m_p/1838.1$</td>
</tr>
<tr>
<td>Compton wave length of the electron</td>
<td>$\lambda_e = 2.43 \cdot 10^{-12}$ m</td>
<td>$\lambda_e = 1838.1 \lambda_p$</td>
</tr>
<tr>
<td>radius of the proton</td>
<td>$r_p = 1.3 \cdot 10^{-15}$ m</td>
<td>$r_p = 0.882 \cdot 10^{20}$ l</td>
</tr>
<tr>
<td>fundamental constant</td>
<td>SI units</td>
<td>natural SI units</td>
</tr>
<tr>
<td>Bohr radius of the hydrogen atom</td>
<td>$r_B = 0.529 \cdot 10^{-10}$ m</td>
<td>$r_B = 40000 r_p$</td>
</tr>
<tr>
<td>Bohr magneton</td>
<td>$\mu_B = \frac{-e\hbar}{2m_e}$</td>
<td>$\mu_B = -mC/s$</td>
</tr>
<tr>
<td>magnetic moment of the electron</td>
<td>$\mu_e = \left(1 + \frac{\alpha}{2\pi} - \ldots\right) \mu_B$</td>
<td>$\mu_e = 1.01 \mu_B$</td>
</tr>
<tr>
<td>nuclear magneton</td>
<td>$\mu_n = \frac{e\hbar}{2m_p}$</td>
<td>$\mu_B = 1836.1 \mu_n$</td>
</tr>
<tr>
<td>magnetic moment of the proton</td>
<td>$\mu_p = 2.79 \mu_n$</td>
<td>$\mu_p = 2.79 \mu_n$</td>
</tr>
</tbody>
</table>

More precise values can be found in CODATA Bull. 63 (1986), and E. Cohen and B. Taylor, Review of Modern Physics 59(4) (1986). A list of high-precision values can also be found in the Appendix to Zeidler, Oxford User’s Guide to Mathematics, Oxford University Press, 2004. In the following Table A.4, observe that the two quantities E and cB, possess the same physical dimension in the SI system. The same is true for cD and H. Here, we use the notation:

- **E** electric field vector,
- **B** magnetic field vector,
- **D** electric field intensity vector,
- **H** magnetic field intensity vector.

In the literature, the terminology with respect to E, B, D, H is not uniform, for historical reasons. Since E and B generate the electromagnetic field tensor (see (14.51) on page 794), it follows from Einstein’s theory of special relativity that the vector fields E and B (resp. D and H) form a unit. The mean magnetic field of earth has the strength $B_{\text{earth}} = 0.5$ Gauss $= 0.5 \cdot 10^{-4}$ Tesla.
Table A.4. Units of physical quantities

<table>
<thead>
<tr>
<th>Physical quantity</th>
<th>SI units</th>
<th>natural SI units</th>
</tr>
</thead>
<tbody>
<tr>
<td>length</td>
<td>m (meter)</td>
<td>m = l (Planck length)</td>
</tr>
<tr>
<td>time</td>
<td>s (second)</td>
<td>s = l/c (Planck time)</td>
</tr>
<tr>
<td>energy, work</td>
<td>J (Joule)</td>
<td>J = ħc/l (Planck energy)</td>
</tr>
<tr>
<td>electric charge</td>
<td>C (Coulomb)</td>
<td>C = (c ħ ε₀)¹/₂ (Planck charge)</td>
</tr>
<tr>
<td>temperature</td>
<td>K (Kelvin)</td>
<td>K = ħc/lk (Planck temperature)</td>
</tr>
<tr>
<td>mass</td>
<td>kg = Js²/m² (kilogram)</td>
<td>Js²/m² = ħ/c (Planck mass)</td>
</tr>
<tr>
<td>electric current strength</td>
<td>A = C/s (ampere)</td>
<td>C/s = c⁵/² (ħε₀)¹/²/l</td>
</tr>
<tr>
<td>voltage</td>
<td>V = J/C (volt)</td>
<td>J/C = (cħ)¹/₂ /lε₀²</td>
</tr>
<tr>
<td>action</td>
<td>Js</td>
<td>Js = ħ</td>
</tr>
<tr>
<td>momentum</td>
<td>Js/m</td>
<td>Js/m = ħ/l</td>
</tr>
<tr>
<td>power</td>
<td>W = J/s (Watt)</td>
<td>J/s</td>
</tr>
<tr>
<td>force</td>
<td>N = J/m (Newton)</td>
<td>J/m</td>
</tr>
<tr>
<td>frequency ν (number of oscillations/time)</td>
<td>1/s</td>
<td>1/s</td>
</tr>
<tr>
<td>angular frequency ω = 2πν</td>
<td>1/s</td>
<td>1/s</td>
</tr>
<tr>
<td>pressure</td>
<td>Pa = N/m² = J/m³</td>
<td>J/m³</td>
</tr>
<tr>
<td>area, cross section</td>
<td>m²</td>
<td>m² = l²</td>
</tr>
<tr>
<td>volume</td>
<td>m³</td>
<td>m³ = l³</td>
</tr>
<tr>
<td>Physical quantity</td>
<td>SI units</td>
<td>natural SI units</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>velocity</td>
<td>m/s</td>
<td>m/s = c</td>
</tr>
<tr>
<td>acceleration</td>
<td>m/s²</td>
<td>m/s² = c²/l</td>
</tr>
<tr>
<td>mass density</td>
<td>kg/m³ = J s²/m⁵</td>
<td>J s²/m⁵</td>
</tr>
<tr>
<td>electric charge density ρ</td>
<td>C/m³</td>
<td>C/m³</td>
</tr>
<tr>
<td>electric current density vector j = ρν</td>
<td>C/m² s</td>
<td>C/m² s</td>
</tr>
<tr>
<td>electric field vector E</td>
<td>N/C = V/m = J/mC</td>
<td>J/mC</td>
</tr>
<tr>
<td>magnetic field vector B</td>
<td>T = Vs/m² = Js/m² C</td>
<td>Js/m² C</td>
</tr>
<tr>
<td>magnetic flow ∫ B df</td>
<td>Wb = Vs = Js/C</td>
<td>Js/C</td>
</tr>
<tr>
<td>electric intensity vector D</td>
<td>C/m²</td>
<td>C/m²</td>
</tr>
<tr>
<td>magnetic field intensity vector H</td>
<td>A/m = C/sm = C/sm</td>
<td>C/sm</td>
</tr>
<tr>
<td>electric dipole moment</td>
<td>Cm</td>
<td>Cm</td>
</tr>
<tr>
<td>magnetic dipole moment</td>
<td>Am² = m² C/s = m² C/s</td>
<td>m² C/s</td>
</tr>
<tr>
<td>polarization P</td>
<td>C/m²</td>
<td>C/m²</td>
</tr>
<tr>
<td>magnetization M</td>
<td>C/ms</td>
<td>C/ms</td>
</tr>
<tr>
<td>scalar potential U</td>
<td>V = J/C</td>
<td>J/C</td>
</tr>
<tr>
<td>vector potential A</td>
<td>Vs/m = Js/mC = Js/mC</td>
<td>Js/mC</td>
</tr>
<tr>
<td>4-potential Aμ</td>
<td>Js/mC</td>
<td>Js/mC</td>
</tr>
</tbody>
</table>
Table A.4. (continued)

<table>
<thead>
<tr>
<th>Physical quantity</th>
<th>SI units</th>
<th>natural SI units</th>
</tr>
</thead>
<tbody>
<tr>
<td>electromagnetic field tensor $F_{\mu\nu}$</td>
<td>$V s/m^2 = Js/m^2C$</td>
<td>Js/m^2C</td>
</tr>
<tr>
<td>($F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu$)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>electric 4-current j^μ</td>
<td>C/m^2s</td>
<td>C/m^2s</td>
</tr>
<tr>
<td>($j^0 = c\rho$, $j^k = j^k e_k$)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schrödinger function ψ in N space dimensions (solution of the Schrödinger equation)</td>
<td>$m^{-\frac{N}{2}}$</td>
<td>$m^{-\frac{N}{2}} = l^{-\frac{N}{2}}$</td>
</tr>
<tr>
<td>Dirac function ψ (solution of the Dirac equation, electron field, quark field, fermion fields)</td>
<td>$1/\text{ms}^{\frac{1}{2}}$</td>
<td>$1/\text{ms}^{\frac{1}{2}} = c^{\frac{1}{2}}/l^{\frac{1}{2}}$</td>
</tr>
<tr>
<td>Lagrangian L in classical mechanics</td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>action $= \int_{t_0}^{t_1} L(q, \dot{q}, t) , dt$</td>
<td></td>
<td>$J = \hbar c/l$</td>
</tr>
<tr>
<td>Lagrangian density \mathcal{L} in relativistic field theory</td>
<td>Js/m^4</td>
<td>$Js/m^4 = \hbar/l^4$</td>
</tr>
<tr>
<td>action $= \int_{\mathbb{R}^4} \mathcal{L}(\psi, \partial \psi, x) , d^4x$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hamiltonian H in classical mechanics, $H = p\dot{q} - L$</td>
<td>J</td>
<td>$J = \hbar c/l$</td>
</tr>
<tr>
<td>Hamiltonian density $\mathcal{H} = \pi \dot{\psi} - \mathcal{L}$</td>
<td>Js/m^4</td>
<td>$Js/m^4 = \hbar/l^4$</td>
</tr>
<tr>
<td>4-potential B_μ of the gluon field in QCD, ($iB_\mu \in SU(3)$)</td>
<td>Js/m</td>
<td>$Js/m = \hbar/l$</td>
</tr>
<tr>
<td>field tensor $G_{\mu\nu}$ of the gluon field ($G_{\mu\nu} = \partial_\mu B_\nu - \partial_\nu B_\mu + ig_s[B_\mu, B_\nu]$)</td>
<td>Js/m^2</td>
<td>$Js/m^2 = \hbar/l^2$</td>
</tr>
</tbody>
</table>
Epilogue

Mathematics is the gate and the key to the sciences.
Roger Bacon (1214–1294)

I love mathematics not only because it is applicable to technology but also because it is beautiful.
Rósza Péter (1905–1977)

The perfection of mathematical beauty is such whatsoever is most beautiful is also found to be most useful and excellent.
D’Arcy Wentworth Thompson (1860–1948)

The observation which comes closest to an explanation for the mathematical concepts cropping up in physics which I know is Einstein’s statement that the only physical theories we are willing to accept are the beautiful ones.
Eugene Wigner (1902–1995)

A truly realistic mathematics should be conceived, in line with physics, as a branch of the theoretical construction of the one real world, and should adopt the same sober and cautious attitude toward hypothetic extensions of its foundations as is exhibited by physics.
Hermann Weyl (1885–1955)

The interplay between generality and individuality, deduction and construction, logic and imagination – this is the profound essence of live mathematics.
Any one or another of the aspects can be at the center of a given achievement. In a far-reaching development all of them will be involved. Generally speaking, such a development will start from the “concrete ground,” then discard ballast by abstraction and rise to the lofty layers of thin air where navigation and observations are easy; after this flight comes the crucial test of landing and reaching specific goals in the newly surveyed low plains of individual “reality.”
In brief, the flight into abstract generality must start from and return to the concrete and specific.17
Richard Courant (1888–1972)

17 Mathematics in the modern world, Scientific American 211(3) (1964), 41–49 (reprinted with permission).
There are mathematicians who reject a binding of mathematics to physics, and who justify mathematical work solely by aesthetical satisfaction which, besides all the difficulty of the material, mathematics is able to offer. Such mathematicians are more likely to regard mathematics as a form of art than science, and this point of view of mathematical unselfishness can be characterized by the slogan “l’art pour l’art”.

On the other hand, there are physicists who regret that their science is so much related to mathematics. They fear a loss of intuition in the natural sciences. They consider the intimate relation with nature, the finding of ideas in nature itself, which was given to Goethe (1749–1832) in such a high degree, as being destroyed by mathematics, and their anger or sorrow is the more serious the more they are forced to realize the inevitability of mathematics.

Both points of view deserve serious consideration; because not only people with narrow minds have expressed such opinions. Yes, one can say that such a radical inclination to one side or the other, if not caused by a lack of talent, is sometimes evidence of a deeper perception of science, as if someone is interested in both sciences, but at the same time is satisfied with obvious connections between mathematics and physics... Mathematics is an organ of knowledge and an infinite refinement of language. It grows from the usual language and world of intuitions as does a plant from the soil, and its roots are the numbers and simple geometrical intuitions. We do not know which kind of content mathematics (as the only adequate language) requires; we cannot imagine into what depths and distances this spiritual eye will lead us.\(^\text{18}\)

Erich Kähler (1906–2000)

The most vitally characteristic fact about mathematics, in my opinion, is its quite peculiar relationship to the natural sciences, or more generally, to any science which interprets experience on a higher than purely descriptive level...

I think that this is a relatively good approximation to truth – which is much too complicated to allow anything but approximations – that mathematical ideas originate in empirical facts, although the genealogy is sometimes long and obscure. But, once they are so conceived, the subject begins to live a peculiar life of its own and is better compared to a creative one, governed by almost entirely aesthetic motivations, than to anything else and, in particular, to an empirical science.

But there is a grave danger that the subject will develop along the line of least resistance, that the stream, so far from its source, will separate into a multitude of insignificant tributaries, and that the discipline will become a disorganized mass of details and complexities. In other words, at a great distance from its empirical sources or after much abstract inbreeding, a mathematical object is in danger of degeneration. At the inception, the style is usually classical; when it shows signs of becoming baroque, then the danger signal is up...

Whenever this stage is reached, then the only remedy seems to be a rejuvenating return to the source: the re-injection of more or less directly empirical ideas. I am convinced that this is a necessary condition to con-

\(^{18}\) On the relations of mathematics to physics and astronomy (in German), Jahresberichte der Deutschen Mathematiker-Vereinigung 51 (1941), 52–63 (reprinted with permission).
serve the freshness and the vitality of the subject and that this will remain equally true in the future.\footnote{The Mathematician. In: The Works of the Mind, Vol. 1, pp. 180–196. Edited by R. Heywood, University of Chicago Press, 1947 (reprinted with permission).}

John von Neumann (1903–1957)

I want to say a word about the communication between mathematicians and physicists. It has been very bad in the past, and some of the blame is doubtless to be laid on the physicist’s shoulders. We tend to be very vague, and we don’t know what the problem is until we have already seen how to solve it. We drive mathematicians crazy when we try to explain what our problems are. When we write articles we don’t do a good enough job of specifying how certain we are about our statements; we do not distinguish guesses from theorems.

On the other hand, since I have said a lot of nice things about mathematics, I have to say that the mathematicians carry an even greater burden of guilt for this communication problem, largely because of their elitism. They often have, it seems to me, as their ideal the savant who is understandable only to a few co-specialists and who writes articles that one has to spend years to try to fathom.

When physicists write articles, they generally start them with a paragraph saying, “Up until now, this has been thought to be the case. Now, so – and – so has pointed out this problem. In this article, we are going to try to suggest a resolution of this difficulty.” On the other hand, I have seen books of mathematics, not just articles but books, in which the first sentence in the preface was, “Let H be a nilpotent subgroup of…” These books are written in what I would call a lapidary style. The idea seems to be that there should be no word in the book that is not absolutely necessary, that is inserted merely to help the reader to understand what is going on.

I think this is getting much better. I find it is wonderful how mathematicians these days are willing to explain their field to interested physicists. This situation is improving, partly because as Iz Singer mentioned, we realize now that in certain areas we have much more in common than we had thought, but I think a lot more has to be done. There is still too much mathematics written which is not only not understandable to experimental or theoretical physicists, but is not even understandable to mathematicians who are not the graduate students of the author.\footnote{Mathematics: The unifying thread in science: Notices Amer. Math. Soc. 33 (1986), 716–733 (reprinted with permission).}

Steven Weinberg (born 1933)

Relations between mathematics and physics vary with time. Right now, and for the past few years, harmony reigns and a honeymoon blossoms. However, I have seen other times, times of divorce and bitter battles, when the sister sciences declared each other as useless – or worse. The following exchange between a famous theoretical physicist and an equally famous mathematician might have been typical, some fifteen or twenty years ago: Says the physicist: “I have no use for mathematics. All the mathematics I ever need, I invent in one week.”
Answers the mathematician: “You must mean the seven days it took the Lord to create the world.”

A slightly more reliable document is found in the preface of the first edition of Hermann Weyl's book on group theory and quantum mechanics from 1928. He writes: “I cannot abstain from playing the role of an (often unwelcome) intermediary in this drama between mathematics and physics, which fertilize each other in the dark, and deny and misconstrue one another when face to face.”

This dramatic situation, described here by one of the great masters in both sciences, is a result of recent times. At the time of Newton (1643–1727) disharmony between mathematics and physics seemed unthinkable and unnatural, since both were his brainchildren; and close symbiosis persisted through the whole of the eighteenth century. The rift arose around 1800 and was caused by the development of pure mathematics (represented by number theory) on the one hand, and of a new kind of physics, independent of mathematics, which developed out of chemistry, electricity and magnetism on the other. This rift was widened in Germany under the influence of Goethe (1749–1832) and his followers, Schelling (1775–1854) and Hegel (1770–1831) and their “Naturphilosophie”.

Our protagonists are Carl Friedrich Gauss (1777–1855), as the creator of modern number theory, and Michael Faraday (1791-1867) as the inventor of physics without mathematics (in the strict sense of the word).

It would be foolish, of course, to claim the nonexistence of number theory before Gauss. An amusing document may illustrate the historical development. Erich Hecke’s famous *Lectures on the Theory of Algebraic Numbers* has on its last page a “timetable”, which chronologically lists the names and dates of the great number theoreticians, starting with Euclid (300 B.C.) and ending with Hermann Minkowski (1864–1909). As a physicist, I am impressed to find so many familiar names in this Hall of Fame: Fermat (1601–1665), Euler (1707–1783), Lagrange (1736–1813), Legendre (1752–1833), Fourier (1768–1830), and Gauss. In fact, we cannot find a single great number theoretician before Gauss, whom we would not count among the great physicists, provided we disregard antiquity. Specialization starts after 1800 with names like Kummer (1810–1891), Galois (1811–1832), and Eisenstein (1823–1852); who were all under the great influence of Gauss’ *Disquisitiones arithmeticae* from 1801. In this specific sense, Gauss’ book marks the dividing line between mathematics as a universal science and mathematics as a union of special disciplines, and between the “géomètre” as a universal “savant” in the sense of the eighteenth century and the specialized “mathématicien” of modern times. As is typical for a man of transition, Gauss does not belong to either category, he was universal and specialized. The struggle raged within him – and made him suffer.

Res Jost (1918–1990)

*Mathematics and physics since 1800: discord and sympathy*²¹

By a particular prerogative, not only does each man advance day by day in the sciences, but all men together make continual progress as the universe ages… Thus, the entire body of mankind as a whole, over many centuries, must be considered as a single man, who lives forever and continues to learn.

Blaise Pascal (1623–1662)

References

1 Hints for further reading can be found in Chap. 17. The author’s homepage contains a complete list of the references to Volumes I through VI. Internet: http://www.mis.mpg.de/

We also refer to E. Zeidler (Ed.), Oxford User’s Guide to Mathematics, Oxford University Press, 2004, which contains a comprehensive list about the standard literature in mathematics.
Amann, H. (1990), Ordinary Differential Equations: An Introduction to Nonlinear Analysis, de Gruyter, Berlin (translated from German into English).

Internet: http://arxiv.org/hep-th/9712072
References

Bogoliubov, N., Logunov, A., Todorov, I. (1975), Introduction to Axiomatic Quantum Field Theory, Benjamin, Reading, Massachusetts (translated from Russian into English).
Internet: http://relativity.livingreviews.org.Articles/Irr-2008-4

\[2\] 1200 references
Bojowald, M. (2009), Zurück vor den Urknall: die ganze Geschichte des Universums (Back before the Big Bang – the complete history of the universe), Fcshier, Frankfurt/Main (in German).
Born, M. (1977), My Life: Recollection’s of a Nobel Laureat, Charles Sribner’s Sons, New York (translated from German into English).

Internet: http://www.cartier@ihes.fr

Internet: http://www.math.fsu.edu/~marcolli/bookjune4.pdf
Dirac, P. (1964), Lectures on Quantum Mechanics, Belfer Graduate School of Science, Yeshiva University, New York.
Dyson, F. (1996), Selected Papers of Freeman Dyson with Commentaries, Amer. Math. Soc., Providence, Rhode Island.
Einstein, A. (1949), Albert Einstein als Philosoph und Naturforscher (Albert Einstein as philosopher and scientist). Edited by P. Schilpp, Kohlhammer Verlag, Stuttgart (in German).

3 1500 references

Fedosov, B. (1996), Deformation Quantization and Index Theory, Akademie-Verlag, Berlin.
Fewster, C. (2008), Lectures on Quantum Field Theory in Curved Space-Time, Department of Mathematics, University of York United Kingdom. Electronic address: cjj3yor.ac.uk
See also the Lecture Notes series of the Max Planck Institute for Mathematics in the Sciences, Leipzig. Internet: http://www.mis.mpg.de/preprints

Fuchs, J. (1992), Affine Lie Algebras and Quantum Groups: An Introduction with Applications in Conformal Field Theory, Cambridge University Press, United Kingdom.

Gärding, L.: See Wightman and Gärding.

Gauß, C. (1863/1933), Werke (Collected works with commentaries), Vols. 1–12, Göttingen, Germany.
Ge, M., Bao-Heng Zhao (1989), Introduction to Quantum Group and Integrable Massive Models of Quantum Field Theory, World Scientific, Singapore.

Gottwald, S., Ilgauds, H., Schlote, K. (1990), Lexikon bedeutender Mathematiker (Biographies of important mathematicians) (in German), H. Deutsch, Frankfurt/Main.4

4 1800 biographies

5 950 references

Harenberg Lexikon der Nobelpreisträger (2000) (Encyclopedia of Nobel Prize Laureates), Harenberg Lexikon Verlag, Dortmund, Germany (in German).

Hatfield, B. (1992), Quantum Field Theory of Point Particles and Strings, Addison-Wesley, Redwood City, California.

Hauser, H. (2003), The Hironaka theorem on resolution of singularities (or: a proof we always wanted to understand), Bull. Amer. Math. Soc. 40(3), 323–403.

Hausner, M., Schwartz, J. (1968), Lie Groups and Lie Algebras (lectures held at the Courant Institute, NYU), Gordon and Breach, New York.

Hollands, S., Wald, R. (2004), Quantum field theory is not merely quantum mechanics applied to low energy effective degrees of freedom, Gen. Rel. Grav. 36, 2595–2603. Internet: gr-qc/0405082

Hwa, R., Teplitz, V. (1966), Homology and Feynman Diagrams, Benjamin, Reading, Massachusetts.

References

Jost, J. (1994), Differentialgeometrie und Minimalflächen (Differential geometry and minimal surfaces), Springer, Berlin (in German).
Klauder, J. (1988), Quantization is geometry, after all, Ann. Phys. 188, 120–141.

Kobzarev, I.: See Manin and Kobzarev.

Kupradse, V. (1956), Randwertaufgaben der Schwingungstheorie und Integralgleichungen (Boundary-value problems for wave problems and integral equations), Deutscher Verlag der Wissenschaften, Berlin (translated from Russian into German).

Lacki, J. et al. (Eds.) Stueckelberg: An Unconventional Figure of Twentieth Century Physics. Selected Scientific Papers with Commentaries, Birkhäuser, Boston, 2008.
Lang, S. (1972), Introduction to Algebraic Geometry, Addison-Wesley, Reading, Massachusetts.
Lous, J., de Wit, B. (1998), Supersymmetry and dualities in various dimensions, Lectures given at the Nato Advanced Study Institute on Strings, Branes, and Dualities, Cargese, Corsica (France), 1997.
Internet: http://arxiv:hep-th/9801132

Manin, Yu. (1988), Quantum Groups and Noncommutative Geometry, CRM, Université de Montréal.
Marsden, J. (1972), Basic Complex Analysis, Freeman, New York.

Morse, P., Feshbach, H. (1953), Methods of Theoretical Physics, Vols. 1, 2, McGraw-Hill, New York.

NASA home page, Internet: http://www.nasa.gov/home/
Nobel prize laureates. Internet: www.nobel.se/physics/laureats/index.html (see also Harenberg (2000) and Dardo (2004)).
Ortner, N. (1987), Construction of Fundamental Solutions, Lecture Notes, University of Innsbruck, Austria, Institute for Mathematics and Geometry.

Particle Data Group. Internet: http://pdg.lbl.gov

Rendall, A. (1998), Lectures on Nonlinear Hyperbolic Differential Equations (in German), Max Planck Institute Albert Einstein for Gravitational Physics, Golm/Potsdam, Germany. Internet: http://www.aei-potsdam.mpg.de/rendall/vorlesung1.htm

Ryder, L. (1999), Quantum Field Theory, Cambridge University Press, United Kingdom.

Sakurai, J. (1967), Advanced Quantum Mechanics, Reading, Massachusetts.

Salam, A., (Ed.) (1968), From a Life of Physics. Evening Lectures at the International Center for Theoretical Physics, Trieste, Italy, with outstanding contributions by Abdus Salam, Hans Bethe, Paul Dirac, Werner Heisenberg, Eugene Wigner, Oscar Klein, and Eugen Lifshitz, International Atomic Energy Agency, Vienna, Austria.

Scriba, C., Schreiber, P. (2003), 5000 Jahre Geometrie: Geschichte, Kulturen, Menschen (5000 years of geometry), Springer, Berlin (in German) (see also Alten et al. (2003), 4000 years of algebra, and Wußing (2008), 6000 years of mathematics).

\(^6\) 1300 references

Stueckelberg, E. (2008), Stueckelberg: An Unconventional Figure of Twentieth Century Physics. Selected Scientific Papers with Commentaries. Edited by J. Lacki, H. Ruegg, and G. Wanders, Birkhäuser, Boston.

7 14 survey articles on general developments, 200 fundamental articles, and 800 additional articles on CD
Tai-Kai Ng (2009), Introduction to Classical and Quantum Field Theory, Wiley, New York.
Teschl, G. (2005), Mathematical Methods in Quantum Mechanics: with Applications to Schrödinger Operators, Lectures held at the University of Vienna, Austria. Internet: http://www.mat.univie.ac.at/~gerald/ftpbook-Schroe/
Thiemann, T. (2007), Modern Canonical Quantum General Relativity, Cambridge University Press, Cambridge, United Kingdom.8
Thouless, D. (Ed.) (1998), Topological Quantum Numbers in Non-Relativistic Physics, World Scientific, Singapore (collection of 40 important articles on superfluidity, quantum Hall effect, phase transitions, etc.)
Tian Yu Cao (Ed.) (1999), Conceptual Foundations of Quantum Field Theory (with contributions made by leading physicists), Cambridge University Press, Cambridge, United Kingdom.
Tilley, D., Tilley, J. (1995), Superfluidity and Superconductivity, Institute of Physics, Bristol.

8 900 references

Tomonaga, S. (1971), Scientific Papers, Vols. 1, 2. Edited by T. Miyazima, Tokyo, Japan.

van der Waerden, B. (Ed.) (1968), Sources of Quantum Mechanics 1917–1926, Dover, New York.

Velo, G.: See Wightman and Velo.

Verch, R. (2004), The current status of quantum fields in curved space time. Lecture held on the occasion of the 125th anniversary of Einstein’s birth. Deutsche

Internet: http://www.mis.mpg.de/preprints/

Vladimirov, V. (1971), Equations of Mathematical Physics, Marcel Dekker, New York (translated from Russian into English).

Witten, E. (1998b), New perspectives in the quest for unification.
 Internet: arxiv:hep-th/9812208
 Internet: http://arxiv.org/hep-th/0604151
Witten, E, Gukov, S (2008), Branes and quantization, 70 pages.

Yeh, J. (1973), Stochastic Processes and the Wiener Integral, Marcel Dekker, New York.

List of Symbols

\[f(x) := x^2 \] (definition of \(f \))
\[f(x) \simeq g(x), \ x \to a \] (asymptotic equality); this means
\[\lim_{x \to a} \frac{f(x)}{g(x)} = 1, \ 949 \]
\[f(x) = o(g(x)), \ x \to a \] (Landau symbol); this means
\[\lim_{x \to a} \frac{f(x)}{g(x)} = 0, \ 949 \]
\[f(x) = O(g(x)), \ x \to a, \ 949 \]
\[f(x) \sim \sum_{n=0}^{\infty} a_n x^n \] (asymptotic expansion), 308, 863

\[\text{sgn}(a) \] (sign of the real number \(a \)), 949
\[[a, b], (a, b], [a, b) \] (intervals), 949
\[\sum_{n=-\infty}^{\infty} b_n, 215 \]
\[\delta_{ij} \] (Kronecker symbol), 949
\[\delta_{11} := 1, \delta_{12} := 0 \]
\[\delta^{ij} = \delta_{ij}, \ 949 \]
\[\delta_{pq}, 672 \]
\[\varepsilon_{ij} \] (skew-symmetric symbol)
\[\varepsilon_{12} = -\varepsilon_{21} = 1, \varepsilon_{11} = \varepsilon_{22} = 0, 337 \]
\[x, y, z \] (right-handed Cartesian coordinates)
\[i, j, k \] (right-handed orthonormal basis)
\[x := xi + yj + zk \] (position vector)
\[||x|| \] (length (norm) of the vector \(x \))

\[t \] (time)
\[x^1 := x, x^2 := y, x^3 := z, x^0 := ct \] (space-time point in Minkowski space), 949
\[\mu := 0, 1, 2, 3 \] (indices for space-time variables in Minkowski space), 949
\[j := 1, 2, 3 \] (indices for spatial variables in Minkowski space), 949
\[\eta_{\mu \nu} \] (Minkowski symbol), \(\eta_{00} := 1, \)
\[\eta_{11} := -1, \eta_{01} := 0 \]
\[\eta^{\mu \nu} = \eta_{\mu \nu}, \ 949 \]
\[\epsilon^{\alpha \beta \gamma \delta}, \epsilon_{\alpha \beta \gamma \delta} \] (skew-symmetric symbol)
\[\epsilon_{0123} := 1, \epsilon_{1023} := -1, 950 \]
\[a_{\mu} b^\mu := \sum_{\mu=0}^{3} a_{\mu} b^{\mu} \] (Einstein’s convention in Minkowski space), 950
\[\zeta(s) \] (Riemann zeta function), 280
\[B_n \] (Bernoulli number), 280
\[\theta(t) \] (Heaviside function), 92, 579
\[\delta(t) \] (Dirac delta function), 593
\[\delta \delta_x \] (Dirac delta distribution), 612
\[\delta_{\mu} \] (Dirac delta function with respect to the measure \(\mu \)), 605
\[\delta_{\Delta t} \] (standard discrete Dirac delta function), 582
\[\delta_{\Delta^2}, \delta_{\mathcal{C}(L)}, \delta_{\mathcal{G}(N)}, \delta_{\eta}, \delta_{\text{div}} \] (discrete Dirac delta functions), 443, 672
\[\mathcal{C}(N) \] (cube in position space), 671
\[\mathcal{G}(N) \] (grid in momentum space), 671
\[\Delta^3 \rho, 672 \]
\[\mathcal{V} \] (normalization volume), 671
\[\delta(x^2 - a^2) \] (special distribution), 598
\[\mathcal{P} \left(\frac{1}{2} \right) \] (special distribution), 621
\[\mathcal{P} \left(\frac{1}{2} \right) \] (special distribution), 623
\[\mathcal{P} \left(\frac{1}{2} \right) \] (special distribution), 738

\[I, \text{id} \] (identity operator)
\[x \in U \] (the point \(x \) is an element of \(U \))
\[U \subseteq V \] (\(U \) is a subset of \(V \))
\[U \subset V \] (\(U \) is a proper subset of \(V \)), 947
\[U \cup V \] (the union of two given sets \(U \) and \(V \))
\[U \cap V \] (the intersection of two given sets \(U \) and \(V \))
\[U \setminus V \] (the difference of two sets \(U \) and \(V \), i.e., the set of elements of \(U \) not belonging to \(V \))
\[\partial U \] (boundary of the set \(U \))
\[\text{int}(U) \] (interior of \(U \))
\[\text{cl}(U) \equiv U \cup \partial U \] (closure of \(U \)), 545
\[\emptyset \] (empty set)
\[\{ x : x \text{ has the property } \mathcal{P} \} \] (the set of all things which have the property \(\mathcal{P} \))

E. Zeidler, Quantum Field Theory I: Basics in Mathematics and Physics, © Springer-Verlag Berlin Heidelberg 2006, Corrected 2nd printing 2009
f : X → Y (map), 947
im(f) (image of the map f), 947
dom(f) (domain of f), 947
f^{-1} : Y → X (inverse map), 947
f(U) (image of the set U), 947
f^{-1}(V) (pre-image of the set V), 947

z = x + yi (complex number)
R(z) := x (real part of z)
S(z) := y (imaginary part of z)
|z| (modulus of z), 211
arg(z) (principal argument of z),
−π < arg(z) ≤ π, 211
arg^∗(z) (argument of z), 211
z^† := x − yi (conjugate complex number)
ln z (logarithmic function), 222
res_z(f) (residue of the function f at the point z), 215

R (set of real numbers)
C (set of complex numbers)
C (closed complex plane), 219
C_+ (open upper half-plane), 665
C_− (closed upper-half plane)
C (open lower half-plane), 665
K = R, C (set of real or complex numbers)
Z (set of integers, 0, ±1, ±2, . . .)
N (set of natural numbers, 0, 1, 2, . . .)
Q (set of rational numbers)
R^N, C^N, K^N (N = 1, 2, . . .), 330
M^4 (Minkowski space), 771

R^x (set of nonzero real numbers)
N^x (set of nonzero natural numbers, 1, 2, . . .)
C^x (set of nonzero complex numbers)
K^x (set of nonzero complex numbers in K)
R_+ (set of nonnegative real numbers, x ≥ 0)
R_− (set of positive real numbers, x > 0)
R_− (set of non-positive real numbers, x ≤ 0)
R_− (set of negative real numbers, x < 0)
R_+ (additive semigroup of nonnegative real numbers)
R_+ (multiplicative group of positive real numbers)

B^2 (closed unit disc)
int(B^2) (open unit disc)
S^1 ≡ ∂B^2 (unit circle)
B^3 (closed 3-dimensional unit ball)
int(B^3) (open 3-dimensional unit ball)
S^2 ≡ ∂B^2 (2-dimensional unit sphere)
B^n (closed n-dimensional unit ball), 270
S^n ≡ ∂B^{n−1} (n-dimensional unit sphere)

Â (mean value), 353
ΔA (mean fluctuation), 353
dim X (dimension of the linear space X), 332
span S (linear hull of the set S), 331
⟨x|y⟩ (inner product), 338
|ψ⟩⟨φ| (Dirac calculus), 361
||φ|| (norm), 338, 368
L(X, Y) (space of linear operators), 334
X^d (dual space), 334
A^† (adjoint operator), 359
A^d (dual operator), 359
A^−1 (inverse operator), 947
A^c (conjugate complex operator); this means (A^†)^d
A^† (adjoint matrix), 343
A^d (dual or transposed matrix), 343
A^c (conjugate complex matrix), 343
A^−1 (inverse matrix), 947
[A, B]_− := AB − BA, 56
[A, B]_+ := AB + BA,
tr(A) (trace), 343, 365
det(A) (determinant), 335
e^A (exponential function), 347
ln A (logarithmic function), 348
σ(A) (spectrum), 367
g(A) = C \setminus σ(A) (resolvent set), 367

GL(X), SL(X), U(X), SU(X)
(Lie groups), 343
U(1), U(n), SU(n), O(n), SO(n),
GL(n, R), SL(n, R), GL(n, C),
SL(n, C) (matrix Lie groups), 343
gl(X), sl(X), u(X), su(X)
(Lie algebras), 344
u(n), su(n), o(n), so(n), gl(n, R),
sl(n, R), gl(n, C), sl(n, C)
(matrix Lie algebras), 345
T_xM (tangent space), 350

lim_{n→∞} ϕ_n = ϕ (limit), 339
f(+0), 95
curl E (curl of the vector field E), 172
div E (divergence of E), 172
\textbf{grad} \(U \) (gradient of the scalar field \(U \)), 172
\(\partial \) (vector differential operator), 172
\(\Delta = -\partial^2 \) (Laplacian), 544
\(\Box \) (wave operator), 797
\(f^* \omega \) (pull-back), 257

\[\psi(t) \equiv \frac{d\psi(t)}{dt} \] (time derivative)
\[f'(x) \equiv \frac{df(x)}{dx} \] (derivative)
\[\partial_\mu f \equiv \frac{\partial f}{\partial x^\mu} \] (partial derivative)
\[\partial^\alpha F \] (partial derivative of the function \(F \) of order \(|\alpha| \)), 538
\[\partial^\alpha F \] (partial derivative of the distribution \(F \)), 613
\(\alpha = (\alpha_1, \ldots, \alpha_N) \) (multi-index), 538
\[|\alpha| = |\alpha_1| + \ldots + |\alpha_N| \] (order of \(\alpha \)), 538
\(\alpha! = \alpha_1! \alpha_2! \cdots \alpha_N! \) (factorial)
\[\nabla_\alpha \] (covariant derivative), 793
\[\delta F(\psi; h) \] (variation of the functional \(F \) at the point \(\psi \) in direction of \(h \)), 398
\[F'(\psi) \equiv \frac{\delta F(\psi)}{\delta \psi} \] (functional derivative of \(F \) at the point \(\psi \)), 398
\[\delta Z(\varphi), \frac{\delta F(\psi)}{\delta \psi} \] (local functional derivative at the point \(x \)), 405, 444, 752, 763

\[\int f(x)dx \] (Lebesgue integral), 531
\[\int f(x)d\mu(x) \] (measure integral), 531
\[\int f(\lambda)dE_\lambda \] (Hilbert–von Neumann spectral integral), 37, 371
\[PV \int_{-\infty}^{\infty} f(x)dx \] (principal value), 90, 621
\[\int F(q)d\mu(q), \int F(\varphi)D\varphi \] (functional integral), 418, 444, 755
\[\Pi_{\Delta t}(q_{in}, q_{out}) \] (space of curves), 422

\text{zero}(f), 611
\text{supp}(f) \] (support of the function \(f \)), 611
\text{supp}(F) \] (support of the distribution \(F \)), 613
\text{supp}(\mu) \] (support of the measure \(\mu \)), 605
\text{sing supp}(F) \] (singular support of the distribution \(F \)), 707
\text{Char}(L) \] (characteristic set of the differential operator \(L \)), 713
\text{WF}(G) \] (wave front set of the distribution \(G \)), 712

\(\mathcal{F}(g) \) (Fourier transform of the function \(g \)), 537
\(\mathcal{F}(G) \) (Fourier transform of the distribution \(G \)), 712

\(\mathcal{F}_M g \) (Fourier–Minkowski transform of the function \(g \)), 774
\(\mathcal{L} g \) (Laplace transform of \(g \)), 94
\(f * g \) (convolution of two functions), 95, 536
\(F * G \) (convolution of two distributions), 619
\(f \otimes g \) (tensor product of two functions), 619
\(F \otimes G \) (tensor product of two distributions), 619

\(C[a, b] \) (space of continuous functions), 368
\(C^1[a, b] \) (space of continuously differentiable functions), 552
\(C^\infty(\Omega) \) (space of smooth functions), 545
\(C^\infty(\Omega) \) (space of smooth functions), 545
\(C^\infty(\Omega) \equiv \mathcal{D}(\Omega) \), 545
\(C^\alpha(\Omega), C^{k,\alpha}(\Omega) \) (Hölder spaces), 556
\(C^{0,1}(\Omega), C^{k,1}(\Omega) \) (Lipschitz spaces), 556

\(L_2(\Omega) \) (Lebesgue space), 533
\(L_2(-\pi, \pi) \), 535
\(L_{loc}(\mathbb{R}^N) \), 612
\(l_2 \) (classical Hilbert space), 536
\(L_2(\mathcal{M}) \) (discrete Lebesgue space)

\(\circ \)
\(W^1_2(\Omega), W^2_2(\Omega) \) (Sobolev spaces), 559
\(W^1_2(\Omega) \), 559
\(W^2_2(\Omega) \) (fractional Sobolev space), 559

\(\mathcal{D}(\Omega) \equiv C^\infty(\Omega) \) (space of smooth test functions with compact support), 545
\(\mathcal{S}(\mathbb{R}^N) \) (space of rapidly decreasing test functions), 539
\(\mathcal{E}(\mathbb{R}^N) \equiv C^\infty(\mathbb{R}^N) \) (space of smooth test functions), 617
\(\mathcal{D}'(\mathbb{R}^N) \) (space of distributions), 611
\(\mathcal{S}'(\mathbb{R}^N) \) (space of tempered distributions), 618
\(\mathcal{E}'(\mathbb{R}^N) \) (space of distributions with compact support), 617

\(\gamma^0, \gamma^1, \gamma^2, \gamma^3 \) (Dirac–Pauli matrices), 791
\(\sigma^0, \sigma^1, \sigma^2, \sigma^3 \) (Pauli matrices), 791
\(\psi \equiv \psi^1 \gamma^0 \), 793

List of Symbols 1023
\(\emptyset, \nabla \) (Feynman’s slash symbols), 794

c (velocity of light in a vacuum), 965
\(h \) (Planck’s quantum of action), 965
\(k \) (Boltzmann constant), 965
\(G \) (gravitational constant), 965
\(\varepsilon_0 \) (electric field constant of a vacuum), 965
\(\mu_0 \) (magnetic field constant of a vacuum), 965
\(e \) (electron charge), 965
\(-e \) (electron charge), 965
\(m_e \) (electron mass), 965
\(\alpha \) (fine structure constant), 965
\(\lambda_C \) (Compton wave length), 144
\(\tilde{\lambda}_C \equiv \lambda_C/2\pi \) (reduced Compton wave-length), 144

\(m \) (meter), 950
\(s \) (second), 950
\(J \) (Joule), 950
\(C \) (Coulomb), 950
\(K \) (Kelvin), 950
\(\mathbf{m}, \mathbf{s}, \mathbf{J}, \mathbf{C}, \mathbf{K} \) (Planck units), 953
\(\text{eV} \) (electron volt), 953
\(\text{MeV} \) (mega electron volt), 953
\(\text{GeV} \) (giga electron volt), 953

\(\rho \) (density operator), 760
\(\beta \equiv 1/kT \), 760

\(P(t, s) \) (propagator), 385
\(P^+ \) (retarded propagator), 386
\(P^- \) (advanced propagator), 386
\(S[\varphi] \) (action of the field \(\varphi \)), 754
\(S(s, t) \) (\(S \)-matrix on the time interval \([t, s]\)), 392

\(S(T) \) (\(S \)-matrix on \([-\frac{T}{2}, \frac{T}{2}]\)), 824
\(|0\rangle, \Phi_0 \) (ground state of a free quantum field)
\(|0_{\text{int}}\rangle, \Phi_{\text{int}} \) (ground state of a quantum field under interactions)
\(T \) (chronological operator), 390, 746

\(Z(J), C_n, C_n, G_n \) (discrete model of a quantum field), 446

\(Z(J, \varphi), Z_{\text{free}}(J, \varphi) \), 450

\(S_n \), 452

\(\varphi_{\text{mean}} \), 459

\(Z_{\text{red}} \), 461

\(V_n \), 462

\(C_n, \text{free} \), 468

\(1 + p^2 - m^2 + 0_{+i} \) (special distribution), 782

\(G_{F, m_0} \) (Feynman propagator for mesons), 777

\(G_F \) (Feynman propagator distribution for mesons), 780

\(G_{F, m_0} \equiv G_{F, m_0=0} \) (Feynman propagator distribution for the wave equation)

\(D_{F}^{\alpha \beta} \equiv -\eta^{\alpha \beta} G_F \) (Feynman propagator distribution for photons), 802

\(S_F \equiv (i\gamma^\alpha \partial_\alpha + m_e)G_{F, m_e} \) (Feynman propagator distribution for electrons), 802
Abderra, 102
Abel, 222, 288, 691
 – prize in mathematics, 75
Abelian
 – function, 551
 – group, 343
 – integral, 221, 551
 – regularization, 691
 – theorem, 288
Abrikosov, 70
absolute time, 25
action, 22, 30, 31, 110, 404, 409, 411, 447, 463, 493, 692, 754, 768, 776, 795, 806, 818
actual information, 944
addition theorem, 212
additive group, 344
adiabatic
 – limit, 623, 687
 – regularization, 691
adjoint
 – matrix, 342, 359
 – operator, 358
Adler–Bell–Jackiw anomaly, 207
advanced
 – fundamental solution, 715
 – propagator, 386, 585
age of the universe, 82, 115
Aharonov, 73
Ahlfors, 71, 74
AKSZ (Aleksandrov, Kontsevich, Schwarz, Zaboronsky), 906
 – master equation, 906
Alferov, 71
Alfvén, 70
algebra, 334
algebraic
 – Feynman integral, 636
 – software systems, 946
 – integral, 221
 – quantum field theory, 868, 921
 – renormalization, 860
 – almost
 – all, 533
 – everywhere, 532
alpha rays, 131
amplitude, 84
analytic
 – continuation, 220, 226
 – operator function, 369
 – S-matrix theory, 221, 226
analyticity, 211
Anderson, 69, 133, 186
angle-preserving map, 212
angular
 – frequency, 26, 84
 – momentum, 147
 – quantum number, 182
anharmonic oscillator, 63
 – renormalization, 628
annihilation operator, 51, 55, 820
anomalous magnetic moment of the electron, 4
anomaly, 906, 934
anti-quark, 135
anticolor charge, 158
antidistribution, 682
antiduality map, 681
antifield, 906
antighost, 879, 885, 892, 903
antilinear, 682
antineutron, 133
antiparticle, 132, 133, 157
antisymmetric, 335
Apéry, 280
arc length, 250
Archimedes, 529
Archimedean ordering, 399
arcwise connected, 241
Ariadne’s thread, VIII
 – in quantum field theory, 328
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>scattering theory</td>
<td>328</td>
</tr>
<tr>
<td>Arnold, 75, 499, 653</td>
<td></td>
</tr>
<tr>
<td>Artin, 60, 67</td>
<td></td>
</tr>
<tr>
<td>Ashtekar program, 744</td>
<td></td>
</tr>
<tr>
<td>asymptotic</td>
<td></td>
</tr>
<tr>
<td>expansion, 308, 864</td>
<td></td>
</tr>
<tr>
<td>freedom, 203</td>
<td></td>
</tr>
<tr>
<td>freedom of quarks, 137</td>
<td></td>
</tr>
<tr>
<td>asymptotically free model in quantum field theory</td>
<td>871</td>
</tr>
<tr>
<td>Atiyah, 3, 71, 75, 259, 650, 925</td>
<td></td>
</tr>
<tr>
<td>Atiyah–Singer index theorem, 259, 894, 924</td>
<td></td>
</tr>
<tr>
<td>atom, 99</td>
<td></td>
</tr>
<tr>
<td>atomic</td>
<td></td>
</tr>
<tr>
<td>model, 152</td>
<td></td>
</tr>
<tr>
<td>number, 117, 152</td>
<td></td>
</tr>
<tr>
<td>axiomatic quantum field theory, 868, 922</td>
<td></td>
</tr>
<tr>
<td>background radiation, 114</td>
<td></td>
</tr>
<tr>
<td>backward light cone, 716</td>
<td></td>
</tr>
<tr>
<td>Bacon, 971</td>
<td></td>
</tr>
<tr>
<td>Baker, 71</td>
<td></td>
</tr>
<tr>
<td>Baker–Campbell–Hausdorff formula, 455, 497, 510</td>
<td></td>
</tr>
<tr>
<td>Balmer, 122</td>
<td></td>
</tr>
<tr>
<td>series, 122</td>
<td></td>
</tr>
<tr>
<td>Banach</td>
<td></td>
</tr>
<tr>
<td>fixed-point theorem, 368</td>
<td></td>
</tr>
<tr>
<td>space, 368</td>
<td></td>
</tr>
<tr>
<td>Bardeen, 70, 577</td>
<td></td>
</tr>
<tr>
<td>bare parameters, 770</td>
<td></td>
</tr>
<tr>
<td>barn, 119, 130</td>
<td></td>
</tr>
<tr>
<td>baryon, 135, 158</td>
<td></td>
</tr>
<tr>
<td>number, 156, 159</td>
<td></td>
</tr>
<tr>
<td>basic laws in physics, 952</td>
<td></td>
</tr>
<tr>
<td>basis, 332</td>
<td></td>
</tr>
<tr>
<td>Basov, 69, 128</td>
<td></td>
</tr>
<tr>
<td>Batalin–Vilkovisky quantization, 905, 933</td>
<td></td>
</tr>
<tr>
<td>Bednorz, 70</td>
<td></td>
</tr>
<tr>
<td>Belevanin, 939</td>
<td></td>
</tr>
<tr>
<td>Bellman, 724</td>
<td></td>
</tr>
<tr>
<td>Bénard cell, 184</td>
<td></td>
</tr>
<tr>
<td>Bequerel, 69, 130</td>
<td></td>
</tr>
<tr>
<td>Bernays, 67</td>
<td></td>
</tr>
<tr>
<td>Bernoulli</td>
<td></td>
</tr>
<tr>
<td>Jakob, 20, 107, 280, 311, 549</td>
<td></td>
</tr>
<tr>
<td>Johann, 549</td>
<td></td>
</tr>
<tr>
<td>number, 108, 280, 311</td>
<td></td>
</tr>
<tr>
<td>polynomial, 314, 320</td>
<td></td>
</tr>
<tr>
<td>Berry, 73</td>
<td></td>
</tr>
<tr>
<td>Besov space, 562</td>
<td></td>
</tr>
<tr>
<td>Bessel space, 716</td>
<td></td>
</tr>
<tr>
<td>beta function</td>
<td></td>
</tr>
<tr>
<td>and renormalization group, 200</td>
<td></td>
</tr>
<tr>
<td>of Euler, 292</td>
<td></td>
</tr>
<tr>
<td>Bethe, 69, 131, 741</td>
<td></td>
</tr>
<tr>
<td>amplitudes, 60</td>
<td></td>
</tr>
<tr>
<td>Bethe–Salpeter equation, 60</td>
<td></td>
</tr>
<tr>
<td>Betti, 253</td>
<td></td>
</tr>
<tr>
<td>number, 253, 898</td>
<td></td>
</tr>
<tr>
<td>Bianchi identity</td>
<td>811</td>
</tr>
<tr>
<td>bicharacteristic curves, 715</td>
<td></td>
</tr>
<tr>
<td>and light rays, 724</td>
<td></td>
</tr>
<tr>
<td>bifurcation, 184, 505</td>
<td></td>
</tr>
<tr>
<td>and renormalization, 633</td>
<td></td>
</tr>
<tr>
<td>equation, 508, 634</td>
<td></td>
</tr>
<tr>
<td>of a flow, 184</td>
<td></td>
</tr>
<tr>
<td>theorem, 505</td>
<td></td>
</tr>
<tr>
<td>theory, 504</td>
<td></td>
</tr>
<tr>
<td>biholomorphic, 213, 553</td>
<td></td>
</tr>
<tr>
<td>bijective, 948</td>
<td></td>
</tr>
<tr>
<td>bilinear functional, 335</td>
<td></td>
</tr>
<tr>
<td>Binnet, 289</td>
<td></td>
</tr>
<tr>
<td>Biot, 254</td>
<td></td>
</tr>
<tr>
<td>Birch and Swinnerton–Dyer conjecture, 79</td>
<td></td>
</tr>
<tr>
<td>Bjorken scaling, 203</td>
<td></td>
</tr>
<tr>
<td>black</td>
<td></td>
</tr>
<tr>
<td>body, 104</td>
<td></td>
</tr>
<tr>
<td>radiation, 104</td>
<td></td>
</tr>
<tr>
<td>hole, 143, 145</td>
<td></td>
</tr>
<tr>
<td>Blumenthal, 67, 543</td>
<td></td>
</tr>
<tr>
<td>Bochner theorem, 226</td>
<td></td>
</tr>
<tr>
<td>Böhm, 101</td>
<td></td>
</tr>
<tr>
<td>Bogoliubov, 577, 651, 855, 856</td>
<td></td>
</tr>
<tr>
<td>formula, 859</td>
<td></td>
</tr>
<tr>
<td>Bohr, 61, 70, 122</td>
<td></td>
</tr>
<tr>
<td>model of the hydrogen atom, 123</td>
<td></td>
</tr>
<tr>
<td>Boltzmann, 100, 284</td>
<td></td>
</tr>
<tr>
<td>constant k, 142, 281, 760, 952</td>
<td></td>
</tr>
<tr>
<td>statistics, 108</td>
<td></td>
</tr>
<tr>
<td>Bólyai, 21</td>
<td></td>
</tr>
<tr>
<td>Bolzano, 230</td>
<td></td>
</tr>
<tr>
<td>existence principle, 231</td>
<td></td>
</tr>
<tr>
<td>Bombielli, 217</td>
<td></td>
</tr>
<tr>
<td>Bombrei, 72</td>
<td></td>
</tr>
<tr>
<td>Borcherds, 72, 937</td>
<td></td>
</tr>
<tr>
<td>Borel, 530</td>
<td></td>
</tr>
<tr>
<td>Born, 29, 33, 37, 48, 63, 64, 67, 70</td>
<td></td>
</tr>
<tr>
<td>approximation, 41</td>
<td></td>
</tr>
<tr>
<td>Bose, 285</td>
<td></td>
</tr>
<tr>
<td>Bose–Einstein</td>
<td></td>
</tr>
</tbody>
</table>
– condensation, 149, 687, 791
– statistics, 149, 285
boson, 147, 517
Bott, 75
bottomness, 156
bound state, 527
– of a quantum field, 60
boundary operator, 894
bounded
– operator, 368
– set, 368
Bourgain, 72
BPHZ (Bogoliubov, Parasiuk, Hepp, Zimmermann), 856
– renormalization, 855
bra symbol, 361
Bragg, 69
braking radiation (bremsstrahlung), 858
brane, 230
Brattain, 70
Breit–Wigner lifetime, 144
Broglie, 65
Brout, 74
Brouwer, 232
Browder, 558
Brown, 513
Brownian motion, 397, 657, 663
BRST (Becchi, Rouet, Stora, Tyutin), 892
– quantization, 399
– symmetry, 892
– transformation, 904, 905
Brunetti, 623

Calabi–Yau manifold, 936
Calderon, 74
Callan–Symanzik equation, 505
Cambridge school, 547
canonical
– commutation relation, 54
– equation, 47
– transformation, 394
Carathéodory, 68, 724
Carleman, 22
Carleson, 74, 75
Cartan
– Élie, 187, 724, 893, 894, 896
– Henri, 74, 400
Cartier, 856
Casimir, 301
– effect, 301
– force, 301
Catalan, 311
– constant, 316
category theory, 14
Cauchy, 215, 559, 527, 653
– characteristic system, 724
– integral formula, 215
– problem in general relativity, 917
– residue method, 381, 735
– residue theorem, 216
– sequence, 339
causal
– convolution, 95
– correlation function, 355, 426
causality, 379
– and analyticity, 93, 697
Cavalieri, 577
Cavendish laboratory, 100, 102
cavity radiation, 105
Cayley, 267, 365
cell decomposition, 244
central limit theorem, 431, 696
CERN (European Organization for Nuclear Research at Geneva, Switzerland), 134, 138
Chadwick, 69, 100, 102, 130
Chamberlain, 70, 133
Chandrasekhar, 69
chaotic motion of asteroids, 290
character, 938
characteristic
– curves, 724
– equation, 367, 721
– set of a differential operator, 713
– surfaces and wave fronts, 721
– system, 413
charge conjugation, 174
charm, 156
chart map, 237
Chebyshev, 696
chemical potential, 281
Cherenkov, 69
Chern, 74, 251
– class, 251
– number, 249
Chern–Simons theory, 266, 813
Chew, 578
chiral matrix, 792
chirality, 147
chronological operator, 44, 384
Chu, 70
CKM (Cabibbo, Kobayashi, Maskawa) mixing matrix, 161
Clay Mathematics Institute (CMI), 78
closed, 238, 341
– complex plane, 219
– Jordan curve, 242
– upper half-plane, 665
COBE (Cosmic Background Explorer) sky maps, 115
cobordism theory (see Vol. IV), 236
coboundary, 895
– operator, 894
cocycle, 123, 895
cocvicerive, 571
Cohen, 71
cohomology, 123, 399, 400, 549, 893
– and physical states, 895
– functor, 14, 275
– group, 900
– of geometric objects, 898
– of Lie groups, 902
– ring, 14
color
– charge, 162
– of quarks, 162, 882
combinatorics and renormalization, 931
commutation relation, 48
commutative group, 343
compact
– subset, 611
– support, 545
– topological space, 241
compactification, 219
compactness, lack of, 572
complete
– measure, 530
– orthonormal system, 357, 534
completeness, 339, 368
– relation, 358, 534
complex
– curve, 237
– energy, 379
– number, 211
– plane, 211
complexity, 282
component, 242
Compton, 69, 114
– scattering (see also Vol. II), 5, 749
– wave length, 124, 136, 144, 957
– reduced, 136, 144
condensation of a gas, 685
conditional probability, 40
conformal, 213, 237
– field theory, 172, 929, 939
– group, 77, 139
– quantum field theory, 939
conformally equivalent, 554
conjugate complex
– matrix, 342
– number, 948
connected
– correlation function, 470, 753
– Feynman graph, 470
– connectedness, 241
connection, 186, 885
Connes, 72, 862, 929
Conrey, 298
conservation
– laws for quantum numbers, 158
– of energy, 31
constitutive law, 699
constrained variational problem, 490
constraining force, 493
continuous, 238
– spectrum, 527
continuum
– φ^4-model, 463, 775
– limit, 852
contractible, 241
contraction, 827
convergence, 339, 368
convolution
– causal, 96
– of distributions, 619
– of functions, 536, 539
Cook, 133
– problem, 79
Cooper, 70, 577
– pair, 577
coordinates, 332, 356
– in gauge theory, 886
Cornell, 70, 687
correlation
– coefficient, 354, 761
– function, 57, 446, 449, 485, 888
– n-point, 745
– free, 471, 745
– full, 471, 745, 784
cosmic strings, 140
cosmology, 916
costate, 351, 352, 599, 683
cotangent bundle, 708, 709
Coulomb
– field, 700
– force, 115, 700
counterterm, 511, 636, 852, 853, 860
coupling constant, 35, 409, 755, 884
Courant, 67, 971
– Institute, 67
covariance principle, 744
covariant derivative, 185, 794
covering
 - group, 268
 - space, 238
CP (Charge Conjugation, Parity) violation, 180
CPT (Charge Conjugation, Parity, Time Reversal) symmetry principle, 173
creation operator, 51, 55, 820
Crick, 71
critical
 - action, 806
 - point, 410, 807
 -- regular, 252
Cronin, 70, 180
cross section, 116, 119, 788, 841, 960
 - differential, 841
 - total, 841
crossing
 - point, 265
 - symmetry, 179
cumulant, 752, 753
Curie
 - Marie, 69, 131
 - Pierre, 131
Curl, 70, 247
curl of a vector field, 173
current density vector, 34
curvature, 185, 885
 - in modern physics, 185
cycle, 894
cyclic vector, 871
cyclotomic field, 936
dalton, 100
damped
 - oscillation, 379
 - wave, 91
Davies, 131
Davis, 74
de Broglie, 70, 114, 144, 693
de Gennes, 70, 73
de Giorgi, 74, 191
de la Valée-Poussin, 295
de Rham cohomology, 399, 899
Debye, 69
Dedekind, 311
 - eta function, 286
deformation
 - invariance, 214
 - quantization, 931
density
 - functional method, 155
 - matrix, 283
 - of a functional, 405
 - operator, 760
DESY (Deutsches Elektronensynchrotron), 135
determinant, 335, 337
 - trick for Grassmann variables, 520, 891
Diesenhofer, 71
Dieudonné, 21, 546, 579
diffeomorphism, 236, 237
differential
 - cross section, 116, 119, 841
 - form, 518, 549, 896
 -- pull-back, 256
 - geometry and modern physics, 186, 251, 885
 - topology, 236, 898
diffraction of light, 726
diffusion, 657
dilute gas, 790
dimension, 332
dimensional
 - analysis, 960
 - regularizaton, 638, 853, 855
dimensionless physical quantities, 962
Diophantus, 18
dipole moment, 700
Dirac, 29, 60, 62, 70, 130, 186, 285, 327,
 357, 361, 527, 579, 702, 850
 - calculus, 90, 261, 284, 361, 534, 599, 677
 - completeness relation, 358, 534
 - delta distribution, 612
 - delta function, 98, 592, 677
 -- see also discrete and truncated
 Dirac delta function, 817
 - equation, 152, 812, 956
 - interaction picture, 43, 396
 - magic formula, 803
 - measure, 531
 - notation, 682
 - substitution trick, 362, 601
Dirac–Fermi statistics, 285
Dirac–Pauli matrices, 792, 882
Dirichlet, 60, 259, 293, 299, 311, 544, 669, 688, 718
- L-function, 298
- function, 718
- integral, 669, 690, 717, 736
- principle, 542, 547, 558
- problem, 542, 544, 568
- series, 263, 311

discrete
- ϕ^4-model, 466
- Dirac delta function, 443, 582, 672, 677, 817
- Fourier transform, 534, 672
- functional derivative, 444
- integral, 443
- Laplace transform, 287
- model in quantum field theory, 462
- symmetries, 796
discretization, 465
- lattice approximation in quantum field theory, 817
disorder, 282
dispersion, 699
- relation, 26, 84, 93, 704
Disquisitiones arithmeticae, 298, 974
distribution, 611
- tempered, 617
divergence of a vector field, 173
Doetsch, 91
domain of holomorphy, 226
Donaldson, 72
Douglas, 71
Drinfeld, 72
dual
- basis, 518
- matrix, 342
- operator, 359, 364
- space, 352, 369
duality, 352
- between light rays and wave fronts, 723
- between strong and weak interaction, 705
- in physics, 692
- map, 681
Duhamel, 387, 610
- principle, 387, 610
Duistermaat, 705
Dynkin formula, 511
Dyson, 1, 2, 5, 27–29, 73, 578, 741, 863
- magic S-matrix formula, 392, 824
- no-go argument, 862
- series, 44, 390, 825
Dyson–Schwinger equation, 455, 789
early universe, 145
east coast convention, 950
effective
- coupling constant, 770
- electron charge, 196, 770
- electron mass, 770
- fine structure constant, 198
- quantities in physics, 849
- quantum action, 462, 486, 753
Ehresmann, 251
eigendistribution, 677
eigenstate, 353
eigenvalue, 353
eikonal, 724
- equation, 723
Eilenberg, 74
Einstein, 22, 24, 26, 29, 61, 67, 102, 113, 143, 172, 251, 327, 397
- light particle hypothesis, 113
- summation convention, 886, 949
- theory of
- general relativity, 113
- special relativity, 112
Eisenstein, 974
electric
- charge, 156, 158
- energy, 544
- field, 698
- field constant, 721, 849
- of a vacuum ε_0, 698, 952
- intensity, 698, 701
- potential, 700
- susceptibility, 699
electromagnetic
- field, 102
- force, 130
- wave, 25, 87, 720
electron
- lepton number, 156
- spin, 267
- volt, 959
electroweak force, 130, 135
electrical
- curve, 19
- differential operator, 713
- function, 19, 244
- integral, 244
encyclopedia, 942
energetic
– Fourier transform, 606
– system of units, 958
energy
– density of the early universe, 145
– of a relativistic particle, 25
– operator, 374, 606, 678, 820
– production on sun, 131
energy-frequency relation, 143
energy-mass relation, 143
energy-time uncertainty, 144
enthalpy, 761
total function, 212, 512
entropy, 108, 168, 169, 282, 761
Epstein, 311
– zeta function, 304, 314
Epstein–Glaser approach, 751, 856
equation of motion, 793
equator, 250
Erdős, 74
Erlanger program, 365
Esaki, 70
essential map, 272
essentially self-adjoint operator, 679
Euclid, 293, 569
Euclidean
– Fourier transform, 540
– inner product, 338
– trick, 661, 669
Euler, 28, 30, 259, 279, 285, 294, 359, 513, 549, 974
– beta function, 292, 640, 939
– characteristic, 244, 245, 247–249, 259, 898, 899, 901
– constant, 197, 639
– exponential formula, 84
– numbers, 313
– partition function, 285
– polyhedra formula, 246
Euler–Lagrange equation, 31, 404, 410, 448, 549, 550, 754, 808, 809
Euler–Maclaurin summation formula, 321

evolution of the universe, 285
exponential
– function, 212, 347, 369, 370
– matrix function, 347
extended
– quantum action functional, 489, 784, 805
– response model, 481
extension strategy in mathematics, 625

Faddeev–Popov
– determinant, 892
– ghost formula, 891
Faddeev–Popov–De Witt ghost
approach, 888
Faltings, 72
Faraday, 102, 974
fast oscillating integral, 717
Faust, VII
Fefferman, 72
Feigenbaum, 73
Fejér theorem, 628
Feldman, 850
femto, 951
Fenn, 71
Fermat, 18, 577, 723
– last theorem, 18
Fermi, 69, 131, 285
– liquid, 920
fermi (unit of length), 129
Fermi–Dirac statistics, 149, 150
fermion, 147, 517
Fert, 71, 74
Feynman, 4, 27–29, 70, 329, 354, 397, 513, 569, 741, 863
– algebraic integral, 636, 946
– dagger symbol, 794
– gauge, 797
– integration trick, 645
– magic formula, 755
– rules, 834, 837, 846
– transition amplitude, 39
Feynman diagram, 5, 41, 463, 470, 750, 757, 775, 831, 834, 837, 838, 845
– equivalent, 838, 839
Feynman path integral, 32, 418, 419, 654, 726
– discrete, 418
– in string theory, 939
– main trouble, 663
Feynman propagator, 32, 57, 98, 421, 468, 579, 778, 781, 802, 803
– n-point, 745
– distribution, 779
– for electrons, 803
– for mesons, 781
– for photons, 802
– formula, 419
– kernel, 423, 590, 608, 662
Feynman–Kac formula, 657
fiber, 271, 709
– bundle, 885
Fibonacci, 288
– number, 289
fibration, 271
Fields medal in mathematics, 71
fine structure constant, 4, 121, 963
finite
 – measure, 530
 – measure integral, 418
 – part of a divergent integral, 621
Finnegans Wake, 100
first law of
 – progress in theoretical physics, 81
 – thermodynamics, 168
Fischer, 533
Fischer–Riesz theorem, 533
Fisher, 73
Fitch, 70, 180
five ages of the universe, 82
flow, 201
fluctuation, 34
 – of energy, 38
Fock, 60
 – space, 51, 56
 – state, 51
force
 – advanced, 584
 – retarded, 584
form factor, 748
formally self-adjoint, 525, 679
forward light cone, 716
four-manifold, 927
Fourier, 28, 88, 259, 285, 374, 527, 535, 974
 – coefficient, 356, 357
 – integral operator, 731
 – method, 259
 – quantization, 49, 55, 819
 – series, 357, 535
Fourier transform, 88, 89, 537, 538
 – and Dirac calculus, 601
 – discrete, 466, 672
 – energetic, 606
 – generalized, 680, 681
 – terminology of the, 540
Fourier–Laplace transform, 542, 663, 703
Fourier–Minkowski transform, 464, 542, 774
Fowler, 69
Fréchet, 397
fractional Sobolev space, 559
Franck, 67, 69
Fraunhofer, 726
Fredenhagen, 623
Fredholm, 29, 543
free
 – correlation function, 745
 – energy, 761
 – enthalpy, 761
 – Green’s function, 745, 822
 – quantum field, 745, 819
Freedman, 72
frequency, 83
Fresnel, 669, 718, 726
 – integral, 669, 718, 736
Frey curve, 18
Friedman
 – Herbert, 73
 – Jerome, 70
Friedrichs, 67, 562
 – extension, 562
Fritzsch, 81
fugacity, 282
Fukui, 70
full
 – correlation function, 471, 745, 784
 – generating functional, 751
 – Green’s function, 746, 769, 847
 – quantum field, 745, 750, 859
fullerene, 247
functional, 351
 – calculus, 397
 – derivative, 58, 397, 402, 594, 597, 752
 – discrete, 444
 – local, 594
 – partial, 403
 – integral, 32, 57, 418, 654, 752
 – discrete, 418
 – generating, 789
 – global quantum action principle, 789
 – mnemonic beauty, 789
 – see also Feynman path integral, 789
functions of observables, 359
functor, 14
fundamental
 – constants in nature, 952, 964
 – interactions in nature, 129
 – particle, 133
 – solution, 580, 648
 – theorem of
 – algebra, 217
 – calculus, 213, 547
Gabor, 69
Galilei transformation, 112
Galois, 12, 936, 974
 – functor, 14
– group (motivic), 862
 gamma
 – convergence, 191
 – function, 292, 639
Gamow, 131
Gårding, 150, 175, 921
Gårding–Wightman axioms, 868
Gâteaux, 397

– boson, 135, 883
 – boson propagator, 888
 – field tensor
 – of gauge bosons, 883
 – rescaled, 884, 887
 – field theory, 186, 187, 251, 879
 – basic ideas, 882
 – invariance principle, 797, 881
 – lattice theory, 135
 – Lie algebra, 883
 – Lie group, 883
 – potential, 796, 883
 – rescaled, 884
 – transformation, 796, 884
 – of the Schrödinger–Maxwell equation, 176
Gauss, 10, 20, 21, 30, 60, 217, 254, 293, 294, 298, 542, 544, 546, 548, 936, 974
 – fundamental theorem of algebra, 217
 – integral, 430, 521
 – infinite-dimensional, 660
 – main formula, 431
 – integral theorem, 548
 – method of least squares, 354, 534
 – principle of critical constraint, 493
 – prize, 73
 – probability distribution, 431, 696
 – system of units, 957
Gauss–Bonnet theorem, 248
Gauss–Bonnet–Chern theorem, 249
Gauss–Grassmann integral, 521
Gelfand, 74, 527
 – triplet, 580, 677
Gelfand–Kostyuchenko spectral theorem, 681
Gell-Mann, 70, 81, 100, 137, 156, 182, 691, 767
Gell-Mann–Low (GL) reduction formula, 429, 847

general
 – linear group, 343
 – relativity, 251

– function, 611
 – state, 599, 683

generating
 – function, 58, 280, 285, 287
 – functional, 751, 785, 787, 805
 – integral, 58, 789, 806

generations of elementary particles, 132

– boson, 135, 883
 – boson propagator, 888
 – condition, 796
 – field tensor
 – of gauge bosons, 883
 – rescaled, 884, 887
 – field theory, 186, 187, 251, 879
 – basic ideas, 882
 – invariance principle, 797, 881
 – lattice theory, 135
 – Lie algebra, 883
 – Lie group, 883
 – potential, 796, 883
 – rescaled, 884
 – transformation, 796, 884
 – of the Schrödinger–Maxwell equation, 176
Gauss, 10, 20, 21, 30, 60, 217, 254, 293, 294, 298, 542, 544, 546, 548, 936, 974
 – fundamental theorem of algebra, 217
 – integral, 430, 521
 – infinite-dimensional, 660
 – main formula, 431
 – integral theorem, 548
 – method of least squares, 354, 534
 – principle of critical constraint, 493
 – prize, 73
 – probability distribution, 431, 696
 – system of units, 957
Gauss–Bonnet theorem, 248
Gauss–Bonnet–Chern theorem, 249
Gauss–Grassmann integral, 521
Gelfand, 74, 527
 – triplet, 580, 677
Gelfand–Kostyuchenko spectral theorem, 681
Gell-Mann, 70, 81, 100, 137, 156, 182, 691, 767
Gell-Mann–Low (GL) reduction formula, 429, 847

general
 – linear group, 343
 – relativity, 251

geo
lens, 711
wave, 138
gravitino, 140
gaptron, 135, 138, 139
Green, 29, 544, 546, 548, 577, 583
– integral formula, 548
– operator, 376, 500
– regularized, 376
Green’s function, 32, 548, 579, 585, 648
– n-point, 745, 769, 848
– 2-point, 57, 426
– 4-point, 57
– advanced, 585
– free, 745, 822
– full, 746, 769, 847
– history of, 577
– in quantum field theory, 57
– prototype, 583
– renormalized, 636
– retarded, 98, 585
Griess, 936
Griffith, 75
Gromov, 74, 75
Gross, 70, 166, 203
Grothendieck, 71
ground state (vacuum), 55, 426, 819
– energy of
– the electromagnetic quantum field, 301
– the harmonic oscillator, 142
group, 342
– epimorphism, 342
– equation, 416
– isomorphism, 342
– morphism, 342
– simple, 936
– velocity, 84
Gudermann, 551
GUT (Grand Unified Theories), 207
Hansch, 70
Haag, 868, 922
– theorem on quantum fields, 751
Haag–Kastler axioms, 869
Haag–Ruelle theory for the S-matrix, 872
Haar, 667
Haar measure, 667
Hackbusch, XI, 570
Hadamard, 295, 556, 621
– regularization of integrals, 621
– state, 744
hadron, 135
Hahn, 69, 73
Hall, 70
Halmos, 741
Halperin, 74
Hamilton, 29, 30, 267, 724
Hamilton–Jacobi differential equation, 726
Hamiltonian, 374
– approach to quantum field theory, 47
Hammurabi, 569
Har Gobind Khorana, 71
Hardy, 285, 288, 569
Hardy–Littlewood theorem, 689
Hardy–Ramanujan theorem, 286
harmonic
– analysis, 533
– map, 554, 813
– oscillator, 23, 45, 96, 409
– wave, 83
Hausdorff, 237
Hawking, 73
– temperature of a black hole, 145
heat conduction equation, 589
heat kernel, 259, 589, 590, 609, 928
– global, 263
– method, 263
Heaviside, 579
– function, 92, 303, 579, 663
– adiabatic regularization, 690
– system of units, 957
Hecke, 285, 974
– algebra, 287
– operator, 287
Hegel, 974
Heisenberg, 23, 29, 34, 46, 47, 60, 62, 63, 70, 111, 122, 130, 142, 155, 523
– algebra, 936
– particle picture, 42
– philosophical principle, 47
– picture, 395
– S-matrix, 38
– uncertainty inequality, 525
Heisenberg–Born–Jordan commutation relation, 42, 48, 64
helicity, 147
Helmholtz, 24, 254, 726
– equation, 723, 727
– potential, 727
Hepp, 855, 856
Herring, 73
Hershey, 71
Hertz
– dipole, 722
– Gustav, 69
– Heinrich, 25
Hess, 69, 131
Hessian, 720
Hewish, 69
Higgs, 74
– mechanism, 183
– particle, 140, 183, 888
high-energy limit, 684, 852
highlights
– in the sciences, 69
– of physics in the 20th century, 943
Hilbert, 17, 21, 29, 67, 68, 337, 370, 527, 542, 544, 551, 724
– action, 813
– Paris lecture, 17
– problems, 17
– space morphism, 340
– spectral
 – family, 38, 370
 – integral, 371
– transform, 93, 666
Hilbert space, 337, 339, 527
– approach, 35
– isomorphism, 340
– rigged, 580
– separable, 680
Hildebrandt, XI, 544, 571
Hilton, 68
hints for further reading, 225, 226, 242, 300, 306, 533, 544, 549, 567, 568, 570, 580, 647, 653, 662, 702, 705, 791, 856, 864, 873, 877, 906, 909
hints for quick reading, 30
Hironaka, 71, 650, 653
– theorem on the resolution of singularities, 560
Hironaka–Atiyah–Bernstein–Gelfand (HABG) theorem, 653
Hirsh, 73
Hirzebruch, XI, 74, 925
historical remarks, 21, 60, 69, 71, 99, 106, 129, 137, 150, 186, 202, 246, 284, 527, 741, 743, 768, 815, 850, 856, 859, 860, 892, 939
history of quantum mechanics, 60, 63
Hodge
– conjecture, 79
– homology, 399
– theory, 569, 926
Hölder
– continuous, 556
– Ernst, 724
– Otto, 557
– space, 556
Hörmander, 71, 74, 649
Hoffmann
– Karl-Heinz, XI
– Roald, 70
Hofstadter, 70
Holley, 71
Holmgren, 543
holomorphic, 211, 212, 221
– extension, 220
– function of several variables, 225
homeomorphism, 238
homological algebra, 399, 894
homology, 399
– functor, 14, 275
– group, 14
homotopic, 240
homotopically
– equivalent, 240
– trivial map, 240
homotopy
– class, 273
– functor, 275
– group $\pi_k(X)$, 273
Hopf, 270
– $U(1)$-bundle, 270
– algebra, 861
– fibration, 270
– map, 270
Hubble, 115
– law, 145
Huber, 71
Hulse, 69, 138
Hurd, 850
Hurwitz, 24, 311
– zeta function, 314
Huygens, 723
– duality, 723
– principle, 621, 727
hydrogen atom, 181, 527
– see also Vol. III (functional analytic approach), 122
Hylleraas, 570
hypercharge, 156
hyperelliptic integral, 551
icosahedron, 247
iff (if and only if), 94
image, 947
imaginary part, 211, 948
implicit function theorem, 508
index, 260
of a stationary point, 247
of an operator, 260
picture, 772
indistinguishability principle, 149
induced topology, 238
inertial system, 111
ininitely large number, 399
infinitesimal
rotation, 411, 412
transformation, 351, 416, 893
infinitesimally small number, 399
infinitesimals, 398
information, 169, 282
infrared
catastrophe, 230
limit, 852
injective, 948
inner
energy, 761
product, 338
instanton, 927
Institute for Advanced Study in Princeton, 67
integral, 530
equation, 388
on Riemann surfaces, 222
integration
by parts, 546
over orbit spaces, 888
tricks, 643
interaction
four fundamental forces in nature, 129
picture, 43, 396, 751
Haag’s theorem, 751
see also gauge field theory, 884
International Congress of Mathematicians (ICM), 71
International Congress on Mathematical Physics (ICMP), 943
interplay between mathematics and physics, 924
intersection number, 232
introductory literature on quantum field theory, 909
invariant theory, 365
inverse
Laplace transform, 374
map, 948
inversion with respect to the unit sphere, 564
irreducible vertex function, 753
irreversible, 167, 181
isolated pole, 512
isometric operator, 340
isomorphic Hilbert spaces, 340
isomorphism, 332, 345
isospin, 155
number, 156
isotope, 152
Itô, 73, 74
iterative method, 368
Ivanenko, 114, 130

Jacobi, 19, 30, 259, 311, 551, 724
inverse problem, 551
Jacobian, 275
Jaffe, 20, 78, 872, 922
Janke, XI
Jensen, 70
John, 215
Joliot, 69
Joliot-Curie, 69
Jones, 72
polynomial, 266
Joos, 101
Jordan
Camille, 242
curve, 242
– theorem, 242
Pascual, 29, 49, 64
Jordan–Wigner bracket, 56
Jorgenson, 259
Josephson, 70
Jost
Jürgen, XI, 191
Res, 175, 225, 974
Joule, 23
Joyce, 100
Kähler
geometry, 926
Kac–Moody algebra, 936
Kadanoff, 73
Kähler, 972
manifold, 72, 277, 936
KAM (Kolmogorov, Arnold, Moser), 653
theory, 290, 499, 653
Kammerlingh-Onnes, 70
Kant, VII
Kapusta, 759
Kastler, 821, 868, 922
Keller
Gottfried, XI
Joseph, 75
Kelvin, 542, 547, 719
- transformation, 564
Kendall, 70
Kepler, 1, 182, 347, 961
kernel theorem, 683
ket symbol, 361
Ketterle, 70, 687
kick force, 586
Killing form, 887
Kirby, 71
Kirchhoff, 24, 105, 726
Kirchhoff–Green representation formula, 727
Klein
- Felix, VII, 19, 60, 243, 247, 365, 552
- Oscar, 118
Klein–Gordon equation, 463, 714, 755, 808, 810, 816, 867
Klein–Nishina formula, 118, 121
Kleinberg, 73
Kleppner, 74
Klima, 741
Kline, 246, 547
KMS (Kubo, Martin, Schwinger), 744
- state, 744
knot
- classification, 265
- theory, 267
Kobayashi, 70
Kodaira, 71, 74
Koebe, 19
Kohn, 70, 155, 571
Kolmogorov, 74, 499, 530, 653
- law in turbulence, 961
Kontsevich, 72, 254, 906
Koshiba, 74
Kostyuchenko, 527
Kramers, 61
Kramers–Kronig dispersion relation, 704
Kreimer, 861
- Hopf algebra, 743, 861
Krein, 74
Kroemer, 71
Kronecker, 257
- integral, 257
- symbol, 56, 356, 949
- generalized, 594
Kroto, 70, 247
Kummer, 974
Kusch, 70

Lafourge, 72
Lagrange, 28, 385, 548, 549, 653
Lagrangian, 30
- and the principle of critical action, 30
- approach to physics, 47
- density, 754, 776, 795, 799, 807
- multiplier, 490, 799, 879
Lamb, 69
Landau
- Edmund, 67, 948
- Lev, 60, 70, 285
- symbol, 948
Landau–Ginzburg potential, 182
Lang, 259
Langlands, 75
- program, 926
Laplace, 91, 254, 259, 285, 374, 544, 557
- transform, 91, 94, 288, 292
- discrete, 285, 287, 291
Laplace transform, 379
- discrete, 287
Laplacian, 260, 544, 557, 561, 956
laser, 128
lattice, 671
- approximation, 817
- gauge theory, 206, 578
Lane, 69
Laughlin, 70
Lawrence, 69
laws of progress in theoretical physics, 81
Lax, 75
Le Verrier, 113
least-squares method, 354
Lebesgue, 528, 529
- integral, 532
- measure, 532
Lebowitz, 192
Lederman, 70, 73
Lee, 3, 70
left-handed neutrino, 147
left-invariant vector field, 903
Legendre, 294, 974
- transformation, 461, 486
Leggett, 70, 74
Lehmann, 441, 767
Leibniz, 1, 103, 254, 336, 397, 398, 547, 577, 578
Lenard, 1, 26, 69, 114
lepton, 132
- number, 156, 158
Leray, 74, 232, 400
Leucippus, 100
Lewis, 26, 114
Lewy, 74
LHC (Large Hadron Collider), 141
l'Huilier, 247
Libchaber, 73
Lichtenstein, 67
Lie, 24, 29, 60, 199, 347, 411, 724
– algebra, 24, 344
– \(so(3)\), \(su(2)\), 269, 345
– \(u(X), su(X), gl(X), sl(X)\), 345
– basis of, 885
– isomorphism, 345
– morphism, 344
– structure constants of, 885, 886
– bracket, 48, 56, 344
– product, 269, 344
– functor, 14
– group, 349
– \(SO(3), U(n), SU(n), Spin(3)\), 269, 344
– \(U(X), SU(X), GL(X), SL(X)\), 344
– basic ideas, 201
– isomorphism, 350
– morphism, 350
– one-parameter, 201, 416
– linearization principle, 350
– subalgebra, 345
– theory for differential equations, 201
Lieb, 1
lifetime, 91, 380, 382
– of a black hole, 145
– of elementary particles, 136
light
– cone, 715
– particle (photon), 26
– ray, 725
– wave, 87
LIGO (Laser Interferometer
Gravitational-Wave Observatory), 139
limits in physics, 684
linear
– functional, 334, 351
– hull, 331
– isomorphism, 332
– material, 699
– morphism, 332
– operator, 332
– response and causality, 703
– response theory, 703
– space, 331
– subspace, 331
link, 265

linking number, 254
– and magnetic fields, 253
Lions, 72
Liouville, 527
– theorem, 220
Lippmann, 29
Lippmann–Schwinger integral equation, 40, 726
Lipschitz, 556
– continuous, 556
– space, 556
Lipschitz-continuous boundary, 548
LISA (Laser Interferometer Space
Antenna), 139
Listing, 254
Littlewood, 288
local
– degree of homogeneity, 624
– functional derivative, 594, 752
– properties of the universe, 229
– symmetry, 176
local-global principle, 220
locality, 871
locally
– holomorphic, 212, 221
– holomorphic at \(\infty\), 219
logarithmic
– function, 222
– matrix function, 348
Lojasiewicz, 649
loop, 242
– cosmology, 917
– gravity, 916
Lorentz, 69
– boost, 869
– condition, 797
– transformation, 112
Lovasz, 75
Low, 691, 767
low-energy limit, 852
lower
– half-plane, 665
– semicontinuous, 571
LSZ (Lehmann, Symanzik, Zimmer-
mann), 441, 767
– axiom, 788
– reduction formula, 446, 451, 485, 748,
767, 769, 786
Luria, 71
Lyapunov–Schmidt method, 634

Maclaurin, 311
macrocossmos, 229
<table>
<thead>
<tr>
<th>Magic</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Dyson S-matrix formula, 824</td>
</tr>
<tr>
<td>- Dyson series for the propagator, 390</td>
</tr>
<tr>
<td>- Faddeev–Popov formula, 890</td>
</tr>
<tr>
<td>- Feynman formula, 419, 764</td>
</tr>
<tr>
<td>- formulas for the Green’s operator, 374</td>
</tr>
<tr>
<td>- Gell-Mann–Low formula, 429, 847</td>
</tr>
<tr>
<td>- LSZ reduction formula, 451, 485, 748, 767, 769, 786</td>
</tr>
<tr>
<td>- quantum action formula, 450</td>
</tr>
<tr>
<td>- quantum action reduction formula, 748, 767, 769, 784, 805</td>
</tr>
<tr>
<td>- survey on magic formulas, 328, 767</td>
</tr>
<tr>
<td>- trace formula, 758</td>
</tr>
<tr>
<td>- Wick formula, 427</td>
</tr>
<tr>
<td>- zeta function formula, 436</td>
</tr>
<tr>
<td>Magnetic</td>
</tr>
<tr>
<td>- field, 698</td>
</tr>
<tr>
<td>- field constant, 721, 849</td>
</tr>
<tr>
<td>- of a vacuum μ_0, 698, 952</td>
</tr>
<tr>
<td>- intensity, 698, 701</td>
</tr>
<tr>
<td>- moment, 152</td>
</tr>
<tr>
<td>- anomalous, 150</td>
</tr>
<tr>
<td>- of the electron, 4</td>
</tr>
<tr>
<td>- of the myon, 6</td>
</tr>
<tr>
<td>- monopole, 701, 702</td>
</tr>
<tr>
<td>- quantum number, 182</td>
</tr>
<tr>
<td>- susceptibility, 699</td>
</tr>
<tr>
<td>Magnetic monopole, 927</td>
</tr>
<tr>
<td>Magnetism</td>
</tr>
<tr>
<td>- magnetization, 698, 701, 968</td>
</tr>
<tr>
<td>Majorant criterion, 496, 531</td>
</tr>
<tr>
<td>Mandelbrot, 73</td>
</tr>
<tr>
<td>Manifold</td>
</tr>
<tr>
<td>- complex, 237</td>
</tr>
<tr>
<td>- oriented, 237</td>
</tr>
<tr>
<td>- with boundary, 548</td>
</tr>
<tr>
<td>Manin, 929, 1002</td>
</tr>
<tr>
<td>Mann, 180</td>
</tr>
<tr>
<td>Mapping degree, 230</td>
</tr>
<tr>
<td>- and electric fields, 255</td>
</tr>
<tr>
<td>Marathe, 13, 254, 264</td>
</tr>
<tr>
<td>Marczewski, 67</td>
</tr>
<tr>
<td>Margulis, 72, 75</td>
</tr>
<tr>
<td>Maslov, 705</td>
</tr>
<tr>
<td>- index, 433</td>
</tr>
<tr>
<td>Mass</td>
</tr>
<tr>
<td>- density, 594</td>
</tr>
<tr>
<td>- hyperboloid, 465</td>
</tr>
<tr>
<td>- of a relativistic particle, 25</td>
</tr>
<tr>
<td>- shell, 465, 637, 715</td>
</tr>
</tbody>
</table>

| Masukawa, 70 |
| Mathematical physics, 13 |
| Matrix |
| - algebra, 342 |
| - calculus, 336, 347, 348 |
| - elements, 357 |
| - of an operator, 336 |
| - group, 342 |
| - mechanics, 64, 65 |
| - rules, 342 |
| Maupertius, 30 |
| Maurin, 67, 569, 925 |
| Maximum principle, 261 |
| Maxwell, 25, 102, 254, 284 |
| - equations, 173, 721, 811, 955 |
| - for material media, 698 |
| McMullen, 72 |
| Mean |
| - energy, 38 |
| - field approximation, 459, 753 |
| - fluctuation, 352, 761 |
| - inner energy, 761 |
| - lifetime, 379, 380 |
| - particle number, 761 |
| - value, 34, 352, 530, 761 |
| Mean-square convergence, 533 |
| Measurable function, 530 |
| Measure |
| - integral, 418, 530, 605 |
| - zero, 533 |
| Measurement of an observable, 356, 760 |
| Mega, 951 |
| - electron volt (MeV), 960 |
| Mellin, 292, 311 |
| - transform, 263, 292, 307, 668 |
| - generalized, 307 |
| - normalized, 292 |
| Mendeleev, 152 |
| Meridian |
| - meromorphic, 215 |
| Meson, 135, 158 |
| - model, 463, 775, 867 |
| Messenger particle, 132, 133 |
| Method of |
| - least squares, 354, 534 |
| - orthogonal projection, 566, 569 |
| - quantum fluctuations, 658 |
| - second quantization, 52 |
| - stationary phase, 32, 432, 437, 717 |
| Metric tensor, 250 |
| Meyer, 152 |
| Michel, 71 |
| Michelson, 25, 69 |
micro, 951
microcosmos, 229
microlocal analysis, 705
microstructure, 191
Mikusiński calculus, 290
millennium prize problems, 78
milli, 951
millibarn, 130
Millikan, 26, 69, 114
Mills, 183, 187, 251
Milnor, 71, 74
minimal surface, 813
Minkowski, 24, 771, 974
metric, 770, 950
space, 771
symbol, 771, 949
Minkowskian versus Euclidean model, 866
mirror symmetry, 705, 926, 927, 936
Mittag–Leffler theorem, 512
models
– exactly soluble, 918
– general relativity, 920
– matrix models, 920
– quantum field theory, 914
– random matrices, 920
– solitons, 914
– statistical physics, 914
modular
– curve, 19
– form, 286, 323
– function, 18
moduli space, 15, 225, 554, 932, 935, 939
modulus, 211, 948
Möbius, 243
Mößbauer, 70
– effect, 115
moment
– of a probability distribution, 58
– problem, 753
– trick, 434
momentum, 35, 147
– operator, 677
– on the real line, 33
monomorphism, 345
monster group, 936
monstrous moonshine module, 936
Montesquieu, 732
moon landing, 491
Mori, 72
morphism, 332, 345
Morse, 253
– index, 252
– theorem, 252
– theory, 252
Moser, XI, 75, 499, 653
motivic Galois group, 862
Müller
– Karl, 70
– Stefan, XI, 191
multi-grid method, 570
multi-index, 538
multilinear functional, 334, 335
multiplicity, 506
Mumford, 72, 75
muon, 132
– lepton number, 156
Nambu, 70, 73, 939
nano, 951
Napier, 182, 347
NASA, 82
natural
– number, 948
– SI units, 953, 966
Navier, 964
Navier–Stokes equations, 79, 964
Ne’eman, 100
Néel, 70
negative
– energy, 380
– real number, 948
neighborhood, 238
– open, 238
net of local operator algebras, 744
Neumann
– Carl, 543
– John von (see von Neumann), 21
neutrino, 130–132
– mass, 147
– oscillations, 147
neutron, 102
Nevanlinna prize in computer sciences, 72
Newman, 295
– adiabatic theorem, 295, 688
Newton, 28, 102, 103, 129, 397, 398, 547, 577, 961
– equation of motion, 35
– polygon, 652
– potential, 557
Nirenberg
– Louis, 705
– Marshall, 71
Nishina, 118
Nobel prize
- in chemistry, 69
- in physics, 69
Noether, 22, 29, 60, 67, 894
- theorem (see also Vol. II), 22, 31
non-degenerate ground state (vacuum), 426
non-positive, 948
non-relativistic approximation, 693
non-standard analysis, 399
noncommutative geometry, 141, 876
- and the Standard Model in particle physics, 929
nonnegative, 948
norm, 339, 368
normal product, 824, 826
- principle, 826
normalization volume, 671
normalized state, 352
notation, 947
Novikov, 71, 75
Nozieres, 73
nucleon, 131
null Lagrangian, 799, 809
number theory and physics, 930

observable, 38, 352
observer, 356
Occhialini, 73
Okunkov, 72
one-parameter Lie group, 201, 416
one-to-one, 948
Onsager, 71
open, 341
- neighborhood, 238
- set, 238
- upper half-plane, 665
operator
- algebra, 334
- approach, 749, 815
- calculus, 37
- function, 359, 369
Oppenheimer, 60
orbifold, 938
orbit, 271
- space, 271
oriented manifold, 237
orthogonal matrix, 343
orthogonality, 356, 566
- relation, 671
orthonormal
- basis, 339
- system, 357
- complete, 357
orthonormality condition
- continuous, 695
- discrete, 358
oscillating integral, 669, 717
Osterwalder, 868
Osterwalder–Schrader axioms, 868
Ostrogradski, 548
Ostwald’s classic library, 218

paired normal product, 827
Paley–Wiener–Schwartz theorem, 664
panorama of
- literature, 909
- mathematics, 15
parallel
- of latitude, 249
- transport, 186, 251
Parasiuk, 855, 856
parity, 156, 161
- transformation, 174
- violation, 167
Parseval
- de Chénes, 358
- equation, 358, 361, 534, 537, 538
partial
- derivative, 538
- functional derivative, 403, 405, 752
particle
- density, 34
- stream, 34
partition
- function, 15, 108, 281, 285, 759
- functional, 759
Pascal, 974
path integral, 32, 57, 418, 654, 934
Paul, 70
Pauli, 64, 70, 130, 131
- exclusion principle, 149, 150, 153, 163, 178
- matrices, 792, 887
- spin-statistics principle, 149, 150
Pauli–Villars regularization, 640, 855
Pauling, 70
pendulum, 960
Penrose, 73
Penzias, 69, 115
Perelman, 72
period, 83
periodic table of chemical elements, 152
Perl, 70, 73
probability, 370
- distribution function, 371
Prochorov, 69, 128
propagation of singularities, 712
propagator, 385, 421, 579, 585
- advanced, 585
- equation, 386
- retarded, 585
proton rest energy, 959
pseudo-differential operator, 731
pseudo-holomorphic curves, 926
pseudo-limit, 12
pseudo-resolvent, 379, 632
Puiseux expansion, 652
punctured open neighborhood, 215
Pythagoras, 17, 569
Pythagorean theorem, 569
QA (quantum action reduction formula), 446, 767, 769
QA axiom, 786
QCD (quantum chromodynamics), 135, 882
QED (quantum electrodynamics; see also Vol. II), 791
quadrupole moment, 700
quantization, 32
- Batalin–Vilkovisky, 905, 933
- in a nutshell, 26
- of phase space, 840
- of Poisson structures, 933
- second, 52
quantum
- chemistry, 155
- computer, 128
- fluctuation, 32, 658, 794
- gravity, 141, 916, 946
- group, 928
- information, 128
- of action, 100, 110, 142
- of action (reduced), 142
- particle, 29
- state, 271
- statistics, 285
- symmetry, 906
quantum action
- axiom, 785, 805
- functional, 784, 805
- extended, 489, 784, 805
- principle
 - global, 449, 756, 789
 - local, 455, 789
- reduction formula, 446, 748, 767, 769, 785
quantum chromodynamics, 578, 882
quantum electrodynamics (see also QED), 791
quantum field, 52
- Bogoliubov’s formula, 859
- classical, 860
- creation and annihilation operators (see also Vol. II), 55
- free, 745
- full, 745, 750
- generalized, 860
- trouble with interacting quantum fields, 750
quantum field theory
- algebraic, 868
- Haag–Kastler approach, 744, 868, 921
- Hadamard states, 744
- Kubo–Martin–Schwinger (KMS) states, 744
- survey on quantum gravity, 912
- Tomita–Takesaki theory for von Neumann algebras, 744
- Ariadne’s thread, 328
- as a low-energy approximation of string theory, 744
- Ashtekar program, 744
- at finite temperature, 759
- axiomatic approach, 868
- Epstein–Glaser, 751, 856
- Garding–Wightman, 868, 921
- Glimm–Jaffe, 872, 922
- Haag–Kastler, 921
- Osterwalder–Schrader, 868
- Segal, 921
- Wightman, 868, 921
- basic formulas, 741
- (QA) and (LSZ), 767
- Dyson’s S-matrix formula, 824
- magic formulas (see also magic), 328, 767
- basic strategies, 741, 815
- Dyson’s operator approach, 815
- Feynman’s functional integral approach, 57, 755, 806
- Schwinger’s response approach, 767
- Batalin–Vilkovisky quantization, 905
- Becchi–Rouet–Stora–Tyutin (BRST) symmetry, 892
- conformal, 939
- constructive, 872
- Faddeev–Popov ghosts, 890
- Faddeev–Popov–De Witt ghost approach, 888
- fascination of, 4
- Haag theorem, 751
- in a nutshell, 27
- interplay between physics and mathematics, 924
- key formula
 -- for the cross section of scattering processes, 841
 -- for the transition probability, 839
- lattice approximation, 817
- method of
 -- Fourier quantization (see also Vol. II), 55
 -- Heisenberg–Pauli canonical quantization, 52, 762
 -- Lehmann–Symanzik–Zimmermann (LSZ), 767
 -- moments and correlation functions (Green’s functions), 744
 -- quantum action (QA), 767
 -- second quantization, 52
- model
 -- asymptotically free, 871
 -- continuum, 775
 -- discrete, 462
 -- exactly soluble, 918
 -- trivial, 871
 -- panorama of literature, 909
 -- paradox of, 2
 -- perturbation theory and
 -- Feynman diagrams (see also Vol. II), 749
 -- Feynman rules (see also Vol. II), 845
- recent developments, 911, 916, 917, 923
- references
 -- actual information, 944
 -- introductory, 909
 -- rigorous approach, 921
 -- standard, 920
 -- renormalization (see also Vol. II), 850
 -- revolution of physics, 22
 -- rigorous
 -- finite-dimensional approach, 327
 -- perspectives, 864
 -- rigorous approaches, 921
 -- soluble models, 914
 -- topological methods, 266, 927
- quantum number, 145, 156
 -- of leptons, 157
 -- of quarks, 157
- quark, 132
 -- confinement, 136, 137, 206, 207
 -- hypothesis, 182
 -- quark-gluon field, 883
- quasi-crystal, 290
- quaternion, 267
- Quillen, 72
- rabbit problem, 288
- Rademacher, 285, 557
 -- theorem, 557
- radiation law, 104
- Radzikowski, 707
- Raman, 69
- Ramanujan, 285
- Ramsey, 70
- random matrices, 920
- randomness of quantum processes, 371
- Rayleigh, 100, 547, 726
- Rayleigh–Jeans radiation law, 105
- Razborov, 73
- real part, 211, 948
- recent developments in quantum field theory, 911, 912, 916, 917, 923
- red shift, 145
- reduced
 -- correlation function, 752
 -- Planck’s quantum of action, \[\hbar = \hbar / 2\pi, 952 \]
- reduction formulas, 748
- references (see also hints for further reading), 975
- refractive index, 721
- regular solution, 492
- regularity condition, 506
- regularization of integrals, 513
- regularized Green’s operator, 376, 502
- regularizing term, 29, 502, 511, 514, 621
- Reines, 70
- relativistic electron, 812
- Rellich theorem, 509
- Remmert, 215, 863
- renormalizability, 856
- renormalization, 5, 377, 499, 511, 621, 627, 757, 770, 786, 848, 850, 858, 864
 -- algebraic, 860
 -- and bifurcation, 633
 -- and Hopf algebras, 862
 -- and tempered distributions, 625, 859
Riemann–Roch–Hirzebruch theorem, 894
Riemannian geometry of the sphere, 249

Riesz
- Fryges, 22, 533
- Marcel, 716
- representation theorem for functionals, 358

rigid Hilbert space, 35, 580, 677
Ritt theorem, 863
Ritz, 122
- method in quantum chemistry, 155
Rivasseau, 851
Roberval, 577
Robinson, 399
Röntgen, 69, 130
Rosanes, 64
Rosen, 850
Rossi, 73
Roth, 71
Rubbia, 70, 138, 184
Rudolph, XI

running (renormalized)
- coupling constant, 198, 204
- prototype, 502
- fine structure constant, 198, 204
Rutherford, 69, 100, 102, 122, 131
Rydberg, 122
Rydberg–Ritz energy formula, 124
Ryle, 69

saddle, 248
Salam, 3, 60, 70, 81, 137
- criterion, 641, 850
Salmhofer, XI
Sato, 75
Savart, 254

scattering
- cross section, 841
- function, 446, 787
- modified, 452, 787
- functional, 451, 787
- matrix (S-matrix), 38, 372, 393, 748, 830
- generalized, 856
- state, 527
- theory (see also Vol. II), 830
Schauder, 232, 562
- theory, 562
Schechter, 1
Schelling, 974
Scherk, 939

sage, 248
Salam, 3, 60, 70, 81, 137
- criterion, 641, 850
Salmhofer, XI
Sato, 75
Savart, 254

scattering
- cross section, 841
- function, 446, 787
- modified, 452, 787
- functional, 451, 787
- matrix (S-matrix), 38, 372, 393, 748, 830
- generalized, 856
- state, 527
- theory (see also Vol. II), 830
Schauder, 232, 562
- theory, 562
Schechter, 1
Schelling, 974
Scherk, 939
Schmidt, 22
Schoenflies, 164
Schrader, 868
Schröffer, 70, 577
Schrödinger, 29, 37, 62, 65, 70, 130, 527
— equation, 36, 394, 810, 955
— stationary, 36
— operator picture, 394
— quantization, 36, 755
— wave picture, 35
Schrödinger–Maxwell equation, 174, 176
Schwartz
— kernel theorem, 683
— Laurent, 71, 327, 527, 577–579
— Melvin, 70
— space $S(\mathbb{R}^N)$, 538
Schwarz
— Albert, 906
— Amandus, 543
— inequality, 340
— John, 939
Schwarzschild radius, 143, 144
Schweber, 741, 863
Schwinger, 4, 28, 29, 66, 70, 285, 376, 397, 741, 767, 863
— function, 867
— integration trick, 646, 780
second law of
— progress in theoretical physics, 81
— thermodynamics, 168
second quantization, 52
secular equation, 367
Segal, 921
Segrè, 70, 133
Selberg–Witten equation, 206, 813
Selberg, 71, 74
self-adjoint operator, 359, 679
self-similarity, 199
semicontinuous, 571
separable Hilbert space, 680
separated, 238
sequentially
— closed, 341
— continuous, 539
Serre, 71, 75
set
— arcwise connected, 241
— bounded, 368
— closed, 238
— compact, 241
— neighborhood of a point, 238
— open, 238
— neighborhood of a point, 238
— simply connected, 242
sharp state, 353
sheaf cohomology, 400, 932
shell structure of atoms, 152
Shimura–Taniyama–Weil conjecture, 19
shock wave, 616
Shockley, 70
Shore, 73
short-wave asymptotics for light, 720
SI system of units, 950
— rescaled, 962
— tables, 966
Sibold, XI
Siegel, 74
sigma
— additivity (σ-additivity), 530
— algebra (σ-algebra), 530
similarity principle in physics, 962
simple group, 936
simply connected, 242
Sinai, 75
Singer, 75, 259
singular
— limits in physics, 691
— support, 707
sink, 248
skein relation, 266
skew-adjoint, 345
skew-symmetric, 346
SLAC (Stanford Linear Accelerator Center, California), 137
Smale, 71, 75, 236
small divisor, 629
Smalley, 70, 247
S-matrix (see scattering matrix), 787
smooth, 236
— boundary, 548
— function, 31, 523
Sobolev, 544
— embedding theorem, 560
— space, 559
software systems in perturbation theory, 946
Sokhotski formula, 666
solid forward light cone, 668
solitons, 920
solitons in mathematics, physics, and molecular biology, 702
Solvay Conference, 62
Sommerfeld, 122, 726
— radiation condition, 727
Sorella, 860
Index 1047

source, 248
 – term, 376
 – trick, 751
space reflection, 174
special
 – functions, 666
 – linear group, 343
 – unitary group, 343
specific volume, 685
spectral
 – family, 370, 371
 – geometry, 262, 928
 – theorem, 680, 681
 – theory in functional analysis (see Vol. II), 371
spectrum, 360, 367
Sperber, 196
spherical
 – coordinates, 249
 – wave, 722
spin, 146, 147
 – operator, 163
 – quantum number, 156, 270
spin geometry, 928
spin-orbit coupling, 154
splitting of spectral lines, 181
spontaneous
 – emission, 126
 – symmetry breaking, 182
square-integrable functions, 580
stability of matter, 1
stable manifold, 208
Standard Model in particle physics
 – elementary introduction, 913
 – emergence of the, 70
 – history, 137
 – minimal supersymmetric, 140, 861
 – renormalization, 861
 – resource letter, 81
 – see also Vols. III–VI, 129
standing wave, 86
state, 271, 351, 352, 599
 – generalized, 599
 – of an elementary particle, 163
state of the art in
 – gravitation and cosmology, 946
 – quantum field theory, 945
state, generalized, 683
stationary
 – phase, 432, 437, 717
 – Schrödinger equation, 375
statistical
 – operator, 760
 – potential, 282
Stein, 75
Steinberger, 70
Steinmann, 625
 – extension, 625
 – renormalization theorem, 625
step function, 530
stereographic projection, 219
Stern, 69
Stern–Gerlach effect, 150
Stevin, 288
stimulated
 – absorption, 126
 – emission, 126
stochastic process, 663
Störmer, 70
Stokes, 547, 548, 964
 – integral theorem, 549
 – on manifolds, 549
Stone, 22, 29
Stone–von Neumann theorem, 821
strangeness, 156
string theory, 1, 2, 77, 139, 224, 293, 744, 813, 925
 – history of, 939
 – references to, 911
strong
 – correlation, 355
 – force, 129, 133
 – hypercharge, 156
 – isospin, 156
structure constants of a Lie algebra, 886
Sturm, 527
sub-velocity of light, 25
subgroup, 342
submanifold (see Vol. III), 265
substitution trick, 362
Sudan, 73
suggested reading (see also hints for further reading), 909
sum rule for spins, 149
summation convention, 771, 949
superconductivity, 577
supernova, 131
supersymmetric Standard Model in particle physics, 140, 861
supersymmetry, 140, 813, 934
support, 611
 – of a distribution, 613
 – of a measure, 605
 – singular, 707
surjective, 948
Sylvester, 365
Sym anzik, 441, 767
symbol of a differential operator, 713
symmetric, 335
symmetry, 164–180
– and special functions, 666
– breaking, 180, 934
– in atomic spectra, 154
– factor of a Feynman diagram, 834
symplectic, 47, 708
– topology, 926
system of units
– energetic system, 958
– Gauss, 957
– Heaviside, 957
– natural SI units, 953, 966
– Planck, 954
– SI (Système International), 83, 950
– tables, 966

Tacoma Narrows Bridge, VIII
Tamm, 114
Tanaka, 71
tangent bundle, 251
Tannoudji, 70
Tao, 72
Tarjan, 72
Tate, 75
tau lepton number, 156
Tauber, 288
– theorem, 288, 689
tauon, 132
Taylor
– Joseph, 69, 73, 138
– Richard, 70
Taylor–Slavnov identity, 855
T-duality, 705
Teichmüller space, 14, 15
Telegdi, 73
tempered distribution, 617
tensor product of distributions, 618
tera, 951
Tesla, 966
test function, 611
theorema egregium, 11, 250
theory of
– general relativity, 113
– probability, 530
– special relativity, 111
thermal Green’s function, 577
thermodynamic limit, 685
third law of progress in theoretical physics, 81
Thirring, 1
Thom, 71, 229, 236
Thompson, 75
Thompson, D’Arcy, 971
Thompson, John, 71, 74
Thomson
– George, 693
– Joseph John, 69, 100, 102, 114, 119, 130
– series, 938
t’Hooft, 70, 73, 137
Thouless, 73
Thurston, 72
time
– period, 83
– reversal, 174
time-ordered
– contraction, 829
– paired normal product, 829
– product, 424, 829
time-ordering, 390
Ting, 70
Tits, 74, 75
Tomonaga, 4, 28, 70, 741, 863
Tonelli, 544, 571
topness, 156
topological
– charge, 216
– invariant, 241
– methods in quantum field theory, 927
– quantum field theory, 254, 266, 926
– quantum number, 216, 243
– space, 238
– arcwise connected, 241
– compact, 241
– separated, 238
– simply connected, 242
topology, 229
total
– cross section, 841
– pairing, 828
Townes, 69, 128
trace, 342, 365
– formula, 758
transformation theory, 327, 357
transition
– amplitude, 39, 353, 757, 825
– maps, 236
– probability, 40, 353, 788, 825
transport equation, 723
triangle inequality, 368
Triebel–Lizorkin space, 562
trivial
– linear space, 332
– model in quantum field theory, 871
Trotter product formula, 509, 656
trouble
– with divergent perturbation series, 863
– with interacting quantum fields, 750
– with scale changes, 189
truncated
– damped wave, 91
– Dirac delta function, 817
– lattice in momentum space, 672
Tsu, 70
tube, 226
tunnelling of α-particles, 131
turbulence, 961
– problem, 79
Tycho Brahe, 182

Uehling, 196
Uhlenbeck, 73, 150
Uhlmann, XI, 60
ultrafilter, 399
ultraviolet limit, 852
uncertainty
– inequality, 34, 144, 525
– relation, 62
uniformization theorem, 19, 223, 554
unit
– ball, 270
– sphere, 270
– surface measure, 563
unitarity of the S-matrix, 372, 892
unitary
– equivalence, 340, 360
– group, 343
– matrix, 343
– operator, 340
universe
– global structure, 229
– local structure, 229
unknot, 265
unphysical states, 895
unstable manifold, 208
upper half-plane, 286, 665

vacuum (ground state), 55, 183, 819
– energy, 302
– expectation value, 427
– polarization, 197
– state, 426
Valiant, 73
van der Meer, 70, 138
van der Waerden, 60
van Dyck, 243
Vandermonde, 254
vanishing measure, 533
Varadhan, 75
variation of the parameter, 385
variational
– lemma, 405
– complex, 546
– real, 545
– problem, 549
vector calculus, 173
velocity of light c, 698, 952
Veltman, 5, 70, 81, 137
Veneziano, 293, 939
– model, 939
Verch, XI
vertex
– algebra, 938
– distribution, 782
– function, 446, 462, 486, 753
– functional, 461
vertex algebra, 938
vibrating string, 807
Vilenkin, 529
Virasoro algebra, 936
virtual particle, 59, 838, 846
virus dynamics, 291
Voevodsky, 72
Volterra, 388, 397
– differential calculus, 752
– integral equation, 43, 388
volume
– form, 250
– potential, 557
von Klitzing, 70
von Neumann, 21, 29, 35, 37, 38, 60,
67, 68, 283, 285, 370, 374, 527, 537,
538, 569, 821, 973
– spectral theorem, 680
von Waltershausen, 10

Ward–Takehashi identity, 855
warning to the reader, 741, 778, 786
Wattson, 71
wave, 83
– equation, 807
– front, 721, 725
– equation, 721
– set, 708, 710, 712
– length, 84
– of matter waves, 144
– mechanics, 65
– number, 84
– operator, 463
– packet, 84
– vector, 708
weak
– convergence, 572
– correlation, 355
– force, 130
– gauge bosons W^\pm, Z^0, 132
– hypercharge, 156
– isospin, 156
weakly lower semicontinuous, 572
Weber, 254
wedge product, 517
Weierstrass, 19, 512, 542, 551, 653
– counterexample, 551
– product theorem, 512
Weil, 74
Weinberg, 3, 70, 81, 100, 137, 203, 641, 973
– power-counting theorem, 641
Weinberg–Salam theory, 578
Weisskopf, 73
Wentzel, 66
Werner, 72
Wess, XI, 935
Wess–Zumino model, 813
west coast convention, 950
Weyl, X, 3, 24, 67, 68, 259, 365, 523, 527, 544, 569, 971, 974
– asymptotics of the spectrum, 262
– lemma, 614
Wheeler, 39, 73, 230
Whitney, 74
Wick
– moment trick, 58, 434
– rotation, 427, 591, 638, 645
– theorem
 – first, 827
 – main, 826
 – second, 828
Wick theorem
– main, 830
Widigerson, 73
Wieman, 70, 687
Wien, 69
– radiation law, 104
Wiener, 21, 29, 397
– integral, 657, 658, 663
– measure, 657
Wightman, 150, 175, 641, 651, 707, 850, 868, 921
– axioms, 868
– functional, 860
Wigner, 49, 70, 165, 527, 971
Wilczek, 70, 203
Wiles, 18, 72, 75, 78
Wilson
– Charles, 69
– Kenneth, 70, 73, 192
– loop, 578
– Robert, 69, 115
winding number, 216
Witten, 13, 72, 75, 76, 78, 102, 940
– functor, 14
– important papers, 925
WKB (Wentzel, Kramers, Brillouin), 433
– approximation, 963
– method, 433
WMAP (Wilkinson Microwave Anisotropy Probe), 82, 115
Wolf prize
– in mathematics, 74
– in physics, 73
wormhole, 230
Wright, 850
Wu, 73
Wüthrich, 71
Yang, 3, 70, 183, 187, 251
Yang–Lee condensation, 685
Yang–Mills
– action, 885
– equation, 813
Yau, 72
Yoccoz, 72
Yukawa, 69
– meson, 145, 714
– potential, 727
Zamolodchikov, 939
Zariski, 74
Zeeman, 69, 182
– effect, 181
Zelmanov, 72
zero
– measure, 532
– set, 530, 532
zeta function, 262, 293, 314, 436, 661
– determinant formula, 263, 661
– of a compact manifold, 262
– regularization, 303, 660
– trick, 436
Zimmermann, 441, 767, 855, 856
– forest formula, 743, 855, 862

Zumino, 935

Zustandssumme (partition function), 759

Zweig, 100, 137