Introduction to Electromagnetic Compatibility

Second Edition

CLAYTON R. PAUL
Department of Electrical and Computer Engineering, School of Engineering, Mercer University, Macon, Georgia and Emeritus Professor of Electrical Engineering, University of Kentucky, Lexington, Kentucky
## Contents

**Preface**  
xvii

1 **Introduction to Electromagnetic Compatibility (EMC)**  
  1.1 Aspects of EMC  
  1.2 History of EMC  
  1.3 Examples  
  1.4 Electrical Dimensions and Waves  
  1.5 Decibels and Common EMC Units  
    1.5.1 Power Loss in Cables  
    1.5.2 Signal Source Specification  
  Problems  
  References  

2 **EMC Requirements for Electronic Systems**  
  2.1 Governmental Requirements  
    2.1.1 Requirements for Commercial Products Marketed in the United States  
    2.1.2 Requirements for Commercial Products Marketed outside the United States  
    2.1.3 Requirements for Military Products Marketed in the United States  
    2.1.4 Measurement of Emissions for Verification of Compliance  
      2.1.4.1 Radiated Emissions  
      2.1.4.2 Conducted Emissions  
    2.1.5 Typical Product Emissions  
    2.1.6 A Simple Example to Illustrate the Difficulty in Meeting the Regulatory Limits
2.2 Additional Product Requirements
   2.2.1 Radiated Susceptibility (Immunity) 81
   2.2.2 Conducted Susceptibility (Immunity) 81
   2.2.3 Electrostatic Discharge (ESD) 81
   2.2.4 Requirements for Commercial Aircraft 82
   2.2.5 Requirements for Commercial Vehicles 82
2.3 Design Constraints for Products 82
2.4 Advantages of EMC Design 84
Problems 86
References 89

3 Signal Spectra—the Relationship between the Time Domain and the Frequency Domain 91
   3.1 Periodic Signals 91
      3.1.1 The Fourier Series Representation of Periodic Signals 94
      3.1.2 Response of Linear Systems to Periodic Input Signals 104
      3.1.3 Important Computational Techniques 111
   3.2 Spectra of Digital Waveforms 118
      3.2.1 The Spectrum of Trapezoidal (Clock) Waveforms 118
      3.2.2 Spectral Bounds for Trapezoidal Waveforms 122
         3.2.2.1 Effect of Rise/Falltime on Spectral Content 123
         3.2.2.2 Bandwidth of Digital Waveforms 132
         3.2.2.3 Effect of Repetition Rate and Duty Cycle 136
         3.2.2.4 Effect of Ringing (Undershoot/Overshoot) 137
      3.2.3 Use of Spectral Bounds in Computing Bounds on the Output Spectrum of a Linear System 140
   3.3 Spectrum Analyzers 142
      3.3.1 Basic Principles 142
      3.3.2 Peak versus Quasi-Peak versus Average 146
   3.4 Representation of Nonperiodic Waveforms 148
      3.4.1 The Fourier Transform 148
      3.4.2 Response of Linear Systems to Nonperiodic Inputs 151
   3.5 Representation of Random (Data) Signals 151
   3.6 Use of SPICE (PSPICE) In Fourier Analysis 155
Problems 167
References 175

4 Transmission Lines and Signal Integrity 177
   4.1 The Transmission-Line Equations 181
   4.2 The Per-Unit-Length Parameters 184
      4.2.1 Wire-Type Structures 186
5.1 Wires 300
  5.1.1 Resistance and Internal Inductance of Wires 304
  5.1.2 External Inductance and Capacitance of Parallel Wires 308
  5.1.3 Lumped Equivalent Circuits of Parallel Wires 309
5.2 Printed Circuit Board (PCB) Lands 312
5.3 Effect of Component Leads 315
5.4 Resistors 317
5.5 Capacitors 325
5.6 Inductors 336
5.7 Ferromagnetic Materials—Saturation and Frequency Response 340
5.8 Ferrite Beads 343
5.9 Common-Mode Chokes 346
5.10 Electromechanical Devices 352
  5.10.1 DC Motors 352
  5.10.2 Stepper Motors 355
  5.10.3 AC Motors 355
  5.10.4 Solenoids 356
5.11 Digital Circuit Devices 357
5.12 Effect of Component Variability 358
5.13 Mechanical Switches 359
  5.13.1 Arcing at Switch Contacts 360
6 Conducted Emissions and Susceptibility

6.1 Measurement of Conducted Emissions
   6.1.1 The Line Impedance Stabilization Network (LISN)
   6.1.2 Common- and Differential-Mode Currents Again

6.2 Power Supply Filters
   6.2.1 Basic Properties of Filters
   6.2.2 A Generic Power Supply Filter Topology
   6.2.3 Effect of Filter Elements on Common- and Differential-Mode Currents
   6.2.4 Separation of Conducted Emissions into Common- and Differential-Mode Components for Diagnostic Purposes

6.3 Power Supplies
   6.3.1 Linear Power Supplies
   6.3.2 Switched-Mode Power Supplies (SMPS)
   6.3.3 Effect of Power Supply Components on Conducted Emissions

6.4 Power Supply and Filter Placement

6.5 Conducted Susceptibility
   Problems
   References

7 Antennas

7.1 Elemental Dipole Antennas
   7.1.1 The Electric (Hertzian) Dipole
   7.1.2 The Magnetic Dipole (Loop)

7.2 The Half-Wave Dipole and Quarter-Wave Monopole Antennas

7.3 Antenna Arrays

7.4 Characterization of Antennas
   7.4.1 Directivity and Gain
   7.4.2 Effective Aperture
   7.4.3 Antenna Factor
   7.4.4 Effects of Balancing and Baluns
   7.4.5 Impedance Matching and the Use of Pads

7.5 The Friis Transmission Equation

7.6 Effects of Reflections
   7.6.1 The Method of Images

Problems

References
CONTENTS

7.6.2 Normal Incidence of Uniform Plane Waves on Plane, Material Boundaries 470
7.6.3 Multipath Effects 479
7.7 Broadband Measurement Antennas 486
7.7.1 The Biconical Antenna 487
7.7.2 The Log-Periodic Antenna 490
Problems 494
References 501

8 Radiated Emissions and Susceptibility 503
8.1 Simple Emission Models for Wires and PCB Lands 504
8.1.1 Differential-Mode versus Common-Mode Currents 504
8.1.2 Differential-Mode Current Emission Model 509
8.1.3 Common-Mode Current Emission Model 514
8.1.4 Current Probes 518
8.1.5 Experimental Results 523
8.2 Simple Susceptibility Models for Wires and PCB Lands 533
8.2.1 Experimental Results 544
8.2.2 Shielded Cables and Surface Transfer Impedance 546
Problems 550
References 556

9 Crosstalk 559
9.1 Three-Conductor Transmission Lines and Crosstalk 560
9.2 The Transmission-Line Equations for Lossless Lines 564
9.3 The Per-Unit-Length Parameters 567
9.3.1 Homogeneous versus Inhomogeneous Media 568
9.3.2 Wide-Separation Approximations for Wires 570
9.3.3 Numerical Methods for Other Structures 580
9.3.3.1 Wires with Dielectric Insulations (Ribbon Cables) 586
9.3.3.2 Rectangular Cross-Section Conductors (PCB Lands) 590
9.4 The Inductive–Capacitive Coupling Approximate Model 595
9.4.1 Frequency-Domain Inductive-Capacitive Coupling Model 599
9.4.1.1 Inclusion of Losses: Common-Impedance Coupling 601
9.4.1.2 Experimental Results 604
9.4.2 Time-Domain Inductive–Capacitive Coupling Model 612
9.4.2.1 Inclusion of Losses: Common-Impedance Coupling 616
9.4.2.2 Experimental Results 617
9.5 Lumped-Circuit Approximate Models 624
9.6 An Exact SPICE (PSPICE) Model for Lossless, Coupled Lines 624
   9.6.1 Computed versus Experimental Results for Wires 633
   9.6.2 Computed versus Experimental Results for PCBs 640
9.7 Shielded Wires 647
   9.7.1 Per-Unit-Length Parameters 648
   9.7.2 Inductive and Capacitive Coupling 651
   9.7.3 Effect of Shield Grounding 658
   9.7.4 Effect of Pigtails 667
   9.7.5 Effects of Multiple Shields 669
   9.7.6 MTL Model Predictions 675
9.8 Twisted Wires 677
   9.8.1 Per-Unit-Length Parameters 681
   9.8.2 Inductive and Capacitive Coupling 685
   9.8.3 Effects of Twist 689
   9.8.4 Effects of Balancing 698

Problems 701
References 710

10 Shielding 713
10.1 Shielding Effectiveness 718
10.2 Shielding Effectiveness: Far-Field Sources 721
   10.2.1 Exact Solution 721
   10.2.2 Approximate Solution 725
      10.2.2.1 Reflection Loss 725
      10.2.2.2 Absorption Loss 728
      10.2.2.3 Multiple-Reflection Loss 729
      10.2.2.4 Total Loss 731
10.3 Shielding Effectiveness: Near-Field Sources 735
   10.3.1 Near Field versus Far Field 736
   10.3.2 Electric Sources 740
   10.3.3 Magnetic Sources 740
10.4 Low-Frequency, Magnetic Field Shielding 742
10.5 Effect of Apertures 745

Problems 750
References 751

11 System Design for EMC 753
11.1 Changing the Way We Think about Electrical Phenomena 758
   11.1.1 Nonideal Behavior of Components and the Hidden Schematic 758
   11.1.2 “Electrons Do Not Read Schematics” 763
11.1.3 What Do We Mean by the Term “Shielding”?  766

11.2 What Do We Mean by the Term “Ground”?  768
   11.2.1 Safety Ground  771
   11.2.2 Signal Ground  774
   11.2.3 Ground Bounce and Partial Inductance  775
      11.2.3.1 Partial Inductance of Wires  781
      11.2.3.2 Partial Inductance of PCB Lands  786
   11.2.4 Currents Return to Their Source on the Paths of Lowest Impedance  787
   11.2.5 Utilizing Mutual Inductance and Image Planes to Force Currents to Return on a Desired Path  793
   11.2.6 Single-Point Grounding, Multipoint Grounding, and Hybrid Grounding  796
   11.2.7 Ground Loops and Subsystem Decoupling  802

11.3 Printed Circuit Board (PCB) Design  805
   11.3.1 Component Selection  805
   11.3.2 Component Speed and Placement  806
   11.3.3 Cable I/O Placement and Filtering  808
   11.3.4 The Important Ground Grid  810
   11.3.5 Power Distribution and Decoupling Capacitors  812
   11.3.6 Reduction of Loop Areas  822
   11.3.7 Mixed-Signal PCB Partitioning  823

11.4 System Configuration and Design  827
   11.4.1 System Enclosures  827
   11.4.2 Power Line Filter Placement  828
   11.4.3 Interconnection and Number of Printed Circuit Boards  829
   11.4.4 Internal Cable Routing and Connector Placement  831
   11.4.5 PCB and Subsystem Placement  832
   11.4.6 PCB and Subsystem Decoupling  833
   11.4.7 Motor Noise Suppression  832
   11.4.8 Electrostatic Discharge (ESD)  834

11.5 Diagnostic Tools  847
   11.5.1 The Concept of Dominant Effect in the Diagnosis of EMC Problems  850

References  857

Appendix A The Phasor Solution Method  859
   A.1 Solving Differential Equations for Their Sinusoidal, Steady-State Solution  859
A.2 Solving Electric Circuits for Their Sinusoidal, Steady-State Response 863
Problems 867
References 869

Appendix B The Electromagnetic Field Equations and Waves 871
B.1 Vector Analysis 872
B.2 Maxwell’s Equations 881
  B.2.1 Faraday’s Law 881
  B.2.2 Ampere’s Law 892
  B.2.3 Gauss’ Laws 898
  B.2.4 Conservation of Charge 900
  B.2.5 Constitutive Parameters of the Medium 900
B.3 Boundary Conditions 902
B.4 Sinusoidal Steady State 907
B.5 Power Flow 909
B.6 Uniform Plane Waves 909
  B.6.1 Lossless Media 912
  B.6.2 Lossy Media 918
  B.6.3 Power Flow 922
  B.6.4 Conductors versus Dielectrics 923
  B.6.5 Skin Depth 925
B.7 Static (DC) Electromagnetic Field Relations—a Special Case 927
  B.7.1 Maxwell’s Equations for Static (DC) Fields 927
    B.7.1.1 Range of Applicability for Low-Frequency Fields 928
  B.7.2 Two-Dimensional Fields and Laplace’s Equation 928
Problems 930
References 939

Appendix C Computer Codes for Calculating the Per-Unit-Length (PUL) Parameters and Crosstalk of Multiconductor Transmission Lines 941
C.1 WIDESEP.FOR for Computing the PUL Parameter Matrices of Widely Spaced Wires 942
C.2 RIBBON.FOR for Computing the PUL Parameter Matrices of Ribbon Cables 947
C.3 PCB.FOR for Computing the PUL Parameter Matrices of Printed Circuit Boards 949
CONTENTS

C.4 MSTRP.FOR for Computing the PUL Parameter Matrices of Coupled Microstrip Lines 951
C.5 STRPLINE.FOR for Computing the PUL Parameter Matrices of Coupled Striplines 952
C.6 SPICEMTL.FOR for Computing a SPICE (PSPICE) Subcircuit Model of a Lossless, Multiconductor Transmission Line 954
C.7 SPICELPI.FOR For Computing a SPICE (PSPICE) Subcircuit of a Lumped-Pi Model of a Lossless, Multiconductor Transmission Line 956

Appendix D A SPICE (PSPICE) Tutorial 959
D.1 Creating the SPICE or PSPICE Program 960
D.2 Circuit Description 961
D.3 Execution Statements 966
D.4 Output Statements 968
D.5 Examples 970

References 974

Index 975